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Abstract

In 2018, following a theoretical prediction from 2011, it was found that
stacking two layers of graphene with a relative twist angle of 1.1° between
them leads to multiple new properties. At this so-called magic angle, the
electronic band structure of the material reconstructs, creating a narrow flat
band at the Fermi level. The formation of a flat band enhances electron-
electron interactions, resulting in the emergence of distinct states of matter
not present in the original graphene layers, including correlated insulators,
superconductivity, ferromagnetism and non-trivial topological states. The
understanding of the origin of these correlated states could help unravel
the physics of highly correlated flat band systems which could potentially
provide key technological developments.

The main objective of this thesis is to study magic-angle twisted bilayer
graphene (MATBG) by creating monolithic gate-defined Josephson junc-
tions. By exploiting the rich phase space of the material, we can create
a Josephson junction by independently tuning the superconductor and the
weak link state. Studying the Josephson effect is a first step towards un-
derstanding fundamental properties of a superconductor, such as its order
parameter.

First, we have optimized the fabrication of these gate-defined junctions made
of all van der Waals materials. We have made double-graphite-gated hBN
encapsulated MATBG devices where the top gate is split into two parts
via nanolithography techniques, in order to independently control the three
regions of the Josephson junction (superconductor, weak-link and supercon-
ductor). Then, we have studied the gate-defined Josephson junctions via
low-temperature transport measurements.

We have observed an unconventional behavior when the weak link of the
junction is set close to the correlated insulator at half filling of the hole-
side flatband. We have observed a phase shifted Fraunhofer pattern with a
pronounced magnetic hysteresis, characteristic of magnetic Josephson junc-
tions. To understand the origin of the signals, we have performed a critical
current distribution Fourier analysis as well as a tight binding calculation
of a MATBG Josephson junction. Our theoretical calculations with a valley
polarized state as the weak link can explain the key signatures observed in
the experiment. Lastly, the combination of magnetization and its current-
induced magnetization switching has allowed us to realize a programmable
zero-field superconducting diode.

xi



Finally, we have shown the flexibility of these devices by studying a MATBG
p-n junction under light illumination. We have studied the relaxation dy-
namics of hot electrons using time and frequency-resolved photovoltage mea-
surements. The measurements have revealed an ultrafast cooling in MATBG
compared to Bernal-bilayer at low temperatures, which can be explained by
the presence of the mini-Brillouin zone.

In summary, we have demonstrated that by integrating various MATBG
states within a single device, we can gain a deeper insight into the system’s
properties and can engineer innovative, complex hybrid structures, such as
magnetic Josephson junctions and superconducting diodes.
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1 Introduction

The discovery of new materials pushes the boundaries of physics and opens
up opportunities for unexpected new technological developments. For the
last two decades, so-called 2-dimensional (2D) materials have emerged as a
very interesting platform. The idea is simple, take materials which can be
thinned down to a single or very few atomic layers and study their properties.
Interestingly, many materials experience a drastic change in the properties
as the dimensionality is reduced. Furthermore, it is found that when the 2D
materials are combined, they not only inherit the properties of the parent
materials, but new properties emerge, such that this can act as a relatively
simple way to engineer new materials.

One of the most recent approaches to engineer the properties of 2D materials
is to change the twist angle between adjacent layers. In this thesis, we will
focus on the study of magic-angle twisted bilayer graphene (MATBG), which
consists of two layers of graphene rotated by a small angle of ∼1.1°. We will
see how by twisting the two graphene layers with respect to each other,
the band structure is dramatically changed, giving rise to completely new
properties.

In this chapter I will first introduce the development of 2D materials, starting
with graphene and continue to explain the field of van der Waals heterostruc-
tures, in which different 2D materials are combined. Then, I will focus on
twisted bilayer graphene, specifically at the so-called magic-angle. At the
end of the chapter I will introduce the objectives and outline of the thesis.

1.1 2D materials and van der Waals

heterostructures

In 2004, there was a breakthrough in materials science when Geim and
Novoselov used a piece of scotch tape to isolate graphene, a single layer of
carbon atoms, by what is now known as mechanical exfoliation [1] (schema-
tized in Fig. 1.1). The discovery had deep physical implications since, for a
long time, it was thought that isolated 2D materials could not exist in nature
due to thermodynamic instabilities [2]. Furthermore, the newly discovered
graphene proved to be very different from its 3-dimensional counterpart,
graphite. Not only is the band structure different, with graphite being a
metal and graphene a semimetal, but it has different both mechanical and
electronic properties. Graphene is one of the strongest materials [3] (with a

1



1 Introduction

Figure 1.1: Mechanical exfoliation of graphene. A piece of scotch tape
is used to isolated the monolayer graphene from the bulk graphite crystal.
The exfoliation is generally performed in a Si/SiO2 substrate, although other
substrates can also be used.

Young’s modulus E = 1 TPa), has a high thermal conductivity (K ≈ 5000
W/mK) [4] and large electron mobilities (µ > 104 cm2V−1s−1 ) enabling the
measurement of quantum Hall effect (QHE) at room T [5]. Furthermore,
the low excitation energy electrons of graphene, those closest to the Fermi
level, behave as massless Dirac fermions. This has direct consequences such
as the measured anomalous integer QHE [6, 7] and the fact that graphene
electrons exhibit Klein tunneling when subjected to confining potentials [8].
This immunity to localization is responsible for the large mean free paths
lmfp ≈ 1µm [1].

Following the discovery of graphene, the question arose of whether other
materials could be exfoliated to obtain their 2D counterpart. The key re-
quirement is that the 3D material is composed of covalently bonded layers
which are held together by weak van der Waals (vdW) forces, which enable
the layers to be mechanically cleaved, isolating a single or few atomic lay-
ers of the material. In 2005, just one year after the discovery of graphene,
several other 2D materials were obtained by mechanical cleavage, namely
hexagonal boron nitride (hBN), molybdenum disulphide (MoS2),niobium
diselenide (NbSe2) and the layered copper oxide Bi2Sr2CaCu2Ox [9]. Since
then, many materials have been discovered [10], including many other states
of matter found in condensed matter physics such as insulators [11], met-
als, semiconductors [12], topological insulators [13], superconductors [14] or
magnets [15].

What makes the field of 2D materials even richer, is the fact that one can
combine these materials relatively freely [10, 16]. The same weak vdW forces
which allow 2D materials to be exfoliated are strong enough to keep these
materials together if two (or more) of these layers are placed or stacked
on top of each other. The first realization of a vdW heterostructure was

2



1.1 2D materials and van der Waals heterostructures

demonstrated by Dean et al. in 2010 [11] when they deposited exfoliated
graphene on top of an exfoliated hBN flake. One year later the fabrication
techniques had already improved drastically, achieving a fully hBN encap-
sulated graphene structure [17], and even isolating two graphene layers from
each other by using a thin hBN [18]. These works not only pioneered the
fabrication of vdW heterostructures but showed how graphene properties
improved drastically (achieving µ ≈ 100, 000 cm2V−1s−1 and lmfp > 3 µm)
by isolating it from the Si/SiO2 substrate typically used for devices. The
main reasons why encapsulating improves the quality are that the interfaces
between 2D materials self-clean, leading to atomically clean interfaces [19]
and that graphene is in this way effectively isolated from the environment.
By adding a metallic screening layer below the hBN to fully isolate the
graphene from the SiO2 [20] and avoiding contact with chemicals during the
fabrication process [21], the properties of encapsulated graphene can even
surpass those of suspended graphene [22], achieving µ ≈ 106 cm2V−1s−1 and
lmfp ≈ 15 µm [21]. The evolution of graphene devices from plain exfoliated
graphene to hBN encapsulated graphene with a bottom metal gate is shown
in Fig. 1.2.

Figure 1.2: Evolution of graphene heterostructure devices. a,
Graphene is measured on a Si/SiO2 by using metal electrodes. b, The graphene
is isolated from the substrate by an hBN flake. The properties are significantly
improved. c, The graphene is fully encapsulated by hBN and isolated from the
substrate by a metal electrode which acts as a global gate. The properties are
further improved.

The close proximity between the atoms of the two layers in a vdW het-
erostructure allows to easily proximitize one material with the properties
of another. This has been used for example to induce spin-orbit coupling
or superconductivity in graphene by putting it in contact with WS2 [23] or
NbSe2 [24], respectively. The fact that any two materials can be combined
without having to match their lattice constant, makes the field of vdW ma-
terials extremely interesting, serving as the perfect playground to explore
the engineering of new materials. As Richard Feynman asked already in

3



1 Introduction

1959 [25]: “What could we do with layered structures with just the right
layers? What would the properties of materials be if we could really arrange
the atoms the way we want them?”.

1.2 Twistronics: rotating 2D materials

An extra degree of freedom of vdW materials, is the addition of rotation
between the layers, which can further modify the properties of the formed
heterostructure [26]. When two materials with the same lattice structure are
stacked on top of each other, this can lead to the appearance of interference
patterns, called moiré patterns. Moiré patterns can emerge when two equal
lattices are rotated with respect to each other and/or when the two lattices
have different lattice parameters, as shown in Fig. 1.3. The former naturally
occurs in graphite, where a defect in the form of a local rotation of a crystal
lattice can lead to some layers being rotated w.r.t. each other. The newly
created superlattice creates a periodic potential, which can directly influence
the band structure, giving rise to van Hove singularities whose position in
energy depend on the twist angle [27, 28]. In the case of two rotated graphene
layers, the moiré superlattice has a real space wavelength given by:

λM =
a

2 sin(θ/2)
, (1.1)

where a = 0.246 nm is the graphene lattice constant. Another way to engi-
neer band structure with moiré patterns is by combining hBN and graphene.
The hBN lattice parameter is 1.8% larger than that of graphene [29], giving
rise to a moiré wavelength of:

λM =
(1 + δ)a√

2(1 + δ)(1− cos θ) + δ2
, (1.2)

where δ is the lattice mismatch and θ the rotation angle between the lattices.
In this case, the superlattice moiré potential creates a set of extra Dirac cones
with their own set of Landau levels [30]. As the moiré superlattice has a long
wavelength (∼14 nm for θ = 0), it allows to perform long sought experiments
such as measuring the fractal structure of a Hofstadter butterfly [20, 31, 32].
The improvement of the rotational alignment between the different layers is
what eventually led to the discovery of MATBG.

4



1.3 Magic-angle twisted bilayer graphene

Figure 1.3: Moiré patterns in an hexagonal lattice. a, Both lattices
have the same size a = a1 = a2. A moiré pattern emerges upon rotating the
layers. b, The lattices have a small lattice mismatch, creating a moiré pattern
at θ = 0°.

1.3 Magic-angle twisted bilayer graphene

When two graphene layers are twisted with respect to each other at low an-
gles θ < 3°, their bands hybridize [33] giving rise to a re-normalized velocity
given by [34]:

v∗ = v0(
1− 3α2

1 + 6α2
) (1.3)

where v0 ≈ 106 m/s is the Fermi velocity of graphene and α represents the
competition between the hybridization of the Dirac cones and the kinetic
energy of the electrons. The re-normalized velocity tends to 0 for the so
called magic angles θ=1.05°, 0.5°, 0.35°, 0.24° and 0.2° [34] (shown in Fig.
1.4a). Specifically, at the first magic-angle of 1.05° the low energy bands
become flat, having a bandwidth of ∼10 meV, with a high density of states
(DOS) and being separated from the high energy bands by an energy band
gap of ∼50 meV (inset of Fig. 1.4a). The combination of having vF → 0
and high DOS can lead to having localized electrons with strong electron-
electron interactions. Having strong electron-electron interactions can give
rise to ordered states of matter such as Mott insulators, ferromagnetism or
superconductivity [35, 36, 34]. This possibility makes magic-angle twisted
bilayer graphene a very interesting platform to study.

After the original prediction of the magic-angle condition by Bistritzer and
MacDonald in 2011 [34], it took several years until the first twisted bilayer
graphene below 2° was studied [37]. The main limiting factor was to accu-

5



1 Introduction

Figure 1.4: MATBG band structure and correlated states. a, Renor-
malized velocity in MATBG vanishing for certain values of α, which correspond
to the magic-angle conditions. Figure is reproduced from [34]. The inset is a
calculation of the band structure of MATBG at θ ≈ 1.05°, adapted from [41].
b, Temperature dependence of a magic angle device θ = 1.16°, showing the ap-
pearance of a correlated insulator states and two superconducting domes near
half filling of the hole flatband. Figure is adapted from [40]. c Measurement of
magnetic hysteresis in a device with θ ≈ 1.17° near three-quarter filling of the
electron flat band. Adapted from [42]. d, Field evolution of Chern insulating
states developing from integer fillings of the electron-side flatband. Reproduced
from [41].

rately control the stacking of the 2D materials to obtain small angles and
clean devices. Advancements in the fabrication techniques [38, 37] finally
led to the observation of correlated states in MATBG in 2018 by Cao et
al. [39, 40]. The first exciting finding was the appearance of insulating
states not predicted by theory (correlated insulators) at half filling of both
the electron and hole side of the moiré band [39]. The second, and most
important finding, was the presence of superconductivity next to the corre-
lated insulating states [40], shown in Fig. 1.4b. The revolutionary discovery
of this work is the fact that superconductivity could be achieved in a non-
superconducting system just by changing the relative alignment between the
neighboring layers.

Following this discovery, it was found that the system was even richer, in-
cluding correlated insulators [39, 43, 44, 45, 46, 47] and superconductors
[40, 43, 44, 45, 48, 49] at different fillings of the band, showing orbital mag-
netism (OM) [50, 44] even leading to quantized anomalous Hall effect [51],
interaction induced correlated Chern insulators (CCI) [52, 53, 54, 41] and
strange metal phases [55, 56, 57]. The beauty of MATBG is that all these
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1.3 Magic-angle twisted bilayer graphene

phases are found within the same flat band and they can be tuned between
each other by changing the Fermi energy by a few meV. From an experi-
mental point of view, this means that they can be all be accessed by using
gate electrodes to dope the MATBG to different filling factors of the bands.

The rich phase space of MATBG and its wide gate tunability led to the
research question at the start of this thesis: can we use gate voltages
to combine these different phases into a single device? In particular, we are
interested in creating a Josephson junction (JJ), a device in which two super-
conducting materials are connected via a weak link or non-superconducting
state [58]. Creating a JJ would be a definite proof of the superconducting
phase coherence in MATBG and an essential step towards understanding its
origin, which is still one of the main questions in the field [59]. Addition-
ally, the JJs in MATBG could also be used to probe the other states found
within the flat band. JJs are extremely sensitive probes, such that they
can be useful to study the non-trivial states found in MATBG. Combining
superconductors with other states, such as magnets or non-trivial topolog-
ical states, can lead to the formation of exotic phases, which can give rise
to spin-triplet supercurrents [60, 61, 62], magnetic π junctions [63, 64, 65]
or topologically non-trivial 4π junctions [66, 67, 68]. These exotic JJs can
have applications in superconducting spintronics [69] or quantum computing
[70]. One major difficulty in the creation of these complex JJs lies in the
engineering of ultra-clean interfaces between the different materials, which is
needed for an efficient coupling between the different phases. This could be
solved in the case of MATBG, since all the states of the JJ can be obtained
within the same material using gate electrodes to define the different regions
of the junction.

Therefore, the main objective of this thesis is to develop gate-defined JJs
in MATBG to study the correlated physics of the flatband. The first aim
is to develop and optimize the fabrication steps required to create the gate-
defined JJs. The second aim is to study the behavior of the gate-defined
JJs by means of low T transport techniques. The device architecture to
achieve the gate-defined junctions consists of a double-graphite-gated hBN
encapsulated MATBG device as shown in Fig. 1.5a. By splitting the top
graphite gate in two, we can effectively tune the region inside the junction
(affected only by the back gate) independently from the region outside the
junction (controlled by both the top and bottom gates) as shown in Fig.
1.5b. By setting the outer region into the SC state and changing the carrier
density in the junction region we can create a JJ, as schematically displayed
in the inset of Fig. 1.5a.
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1 Introduction

Figure 1.5: Gate-defined JJ architecture in MATBG a, Double-
graphite-gated hBN encapsulated MATBG Hall bar, in which the graphite
top gate is split in two. (Inset) Schematic of the MATBG forming a JJ: being
superconducting (SC) on the sides while having a different carrier density (nJ)
in the weak link area. b, (Top) Carrier density profile corresponding to having
a different carrier density inside and outside the junction area. dJ corresponds
to the size of the junction. (Bottom) Cross section around the junction area.

1.4 Outline of the thesis

In this introductory chapter we have introduced the state-of-the-art of the
MATBG field and the main concepts that will be mentioned throughout the
thesis. We have finished stating the main objective of the thesis.

In Ch. 2 we introduce the main theoretical concepts used in the thesis:
introducing the band structure of MATBG, discussing the main physics of
JJs and focusing on their behavior under magnetic fields.

In Ch. 3 we introduce all the methods used in the thesis, namely sample
fabrication and electrical measurements at low T . In the fabrication section
we discuss all the details needed to create high quality MATBG devices and
how these can be shaped to create a JJ.

In Ch. 4 we discuss the optimization process which was done in order to
successfully create the JJs. Due to the complexity of the system, several
parameters need to be taken into account to ensure a successful fabrication
process.

In Ch. 5 we show the measurements performed to characterize the fabri-

8



1.4 Outline of the thesis

cated gate-defined JJs. This starts by characterizing the superconducting
state of MATBG, then detailing how the gate electrodes are used to create
the junction and finally proving the appearance of a JJ by measuring their
Fraunhofer patterns [71].

In Ch. 6 we focus on the measurements of the JJ when the weak link is
set close to the CI at half-filling of the hole band. We show how this JJ
breaks both inversion and time reversal symmetry, leading to the creation of
a magnetic JJ and a superconducting diode. We discuss the possible origins
of the measured unconventional JJ. We show how most of the signals can be
explained by considering the state at ν = −2 to be a valley polarized state
with Chern number C = −2 [71].

Ch. 7 shows how the same devices used to create JJs can be used to create a
gate-defined pn-junction. After characterizing the pn-junctions in transport,
we probe the junction under light illumination to study the cooling dynamics
of the electrons. We show how electrons in devices close to magic-angle
have very fast cooling dynamics at low T when compared to Bernal bilayer
graphene [72].

Finally, Ch. 8 gives the main conclusions found in the thesis. It also discusses
possible directions of research following the results found in this thesis and
the current state of the MATBG field.
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2 Theoretical Background

In this chapter we introduce the basic theoretical concepts which will be used
throughout the thesis. The main parts are the understanding of twisted
bilayer graphene, specifically at the magic angle, and the basic theory of
Josephson junctions. However, in order to properly introduce magic-angle
graphene, we will build from its basic components: graphene and bilayer
graphene.

2.1 Graphene

Graphene is a monolayer of carbon atoms organized in a honeycomb lattice.
It was first discovered by Novoselov and Geim et al. in 2004 by mechanical
exfoliation of a graphite crystal [1] and has since then widely studied in all
areas of science [73]. The theoretical study of graphene dates back to 1947,
when Wallace first studied its band structure [74]. Graphite contains four
valence electrons in the 2s and 2p orbitals, which in the graphene configu-
ration, organize having 3 electrons in a sp2 hybridization leaving one free p
electron. The three hybridized electrons, form covalent σ bonds in plane and
do not contribute to the conductivity. The final 2pz electron forms weaker
π bonds out-of-plane and is the one that contributes to the conductivity.
Therefore, the band structure is calculated only taking into account this 2pz
electron.

The honeycomb hexagonal lattice contains two inequivalent atoms A and
B, which translates to the fact that the structure can be studied as two
triangular lattices with two atoms per unit cell, and lattice vectors a1 and
a2 (see Fig. 2.1):

a1 =
a

2
(3,

√
3), a2 =

a

2
(3,−

√
3), (2.1)

.

with the reciprocal lattice vectors defined by ai ·bj = 2πδij (δij refers to the
Kronecker delta while δi represents the lattice vectors of graphene). Each
atom has three nearest neighbors, which form part of the other sublattice,
such that an A atom is surrounded by 3 B atoms and vice versa, which are
separated in real space by the vectors:

δ1 =
a

2
(1,

√
3), δ2 =

a

2
(1,−

√
3), δ3 = −a(1, 0), (2.2)
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2 Theoretical Background

Figure 2.1: Graphene lattice and band structure. a, Real space
graphene honeycomb lattice, where A andB denote the two inequivalent atoms.
b, Reciprocal space lattice, showing the K and K ′ points in the 1st Brillouin
zone. c, Graphene´s band structure, also with a close up near the K point,
showing the linear dispersion. Fig. c is adapted from [75].

.

The corners of the Brillouin zone K and K ′ are what we call the Dirac points
(the reason for this is explained below) and are given by reciprocal lattice
coordinates:

K = (
2π

3a
,

2π

3
√
3a

), K′ = (
2π

3a
,− 2π

3
√
3a

), (2.3)

The tight binding Hamiltonian for graphene, considering only the nearest
neighbor hopping is [75]:

Ĥ =− t
∑

<i,j>,σ

(a†σ,ibσ,j +H.c.). (2.4)

Where a†σ,j, aσ,j(b
†
σ,j, bσ,j) create/annihilate an electron of sublattice A (B),

on site Rj with spin σ =↑, ↓ and H.c. the hermitian conjugate. The nearest
neighbor (A−B) hopping given by the overlap of the π orbital is t ≈ 2.8 eV,
while the next nearest neighbor (A−A) hopping value is not exactly known,
and, in many cases, can be neglected [76]. We can write the Hamiltonian in
reciprocal space by applying the Fourier transform:

a†i =
1√
N

∑
k

eik·ria†k, b
†
j =

1√
N

∑
k

eik·rjb†k, (2.5)

where N is the number of A and/or B sites. The Hamiltonian is then written
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2.1 Graphene

(ignoring the spin, taking it as a degeneracy of the system):

Ĥ(k) = −t
∑
k,δj

(e−ik·δa†kbk +H.c.), (2.6)

where
∑

δ sums over the nearest-neighbor vectors δ1, δ2 and δ3.

The Hamiltonian can then be represented in matrix form as:

Ĥ(k) =
∑
k

Ψ†h(k)Ψ,

having Ψ =

(
ak
bk

)
, h(k) = −t

(
0 ∆k

∆∗k 0

)
and ∆k =

∑
δ

eik·δ,
(2.7)

having eigenvalues [74]:

E±(k) = ±t
√

3 + f(k)),

with f(k) = 2 cos
(√

3kya
)
+ 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
.

(2.8)

The equation shows how the spectrum has electron-hole symmetry and the
bands touch at the Dirac points K and K′ (see Fig. 2.1c). It is interesting
then, to solve the band structure at small momentum q relative to the Dirac
points such that k = K + q, with |q| << |K|. In this case ∆k = ∆K+q,
which leads to:

h(K + q) = h̄vF

(
0 qx + iqy

qx − iqy 0

)
= h̄vFq · σ, (2.9)

with vF = −t3a
2
= 106 m/s the Fermi velocity and σ = (σx, σy) the vector

Pauli matrices. This is simply the equation for massless Dirac fermions,
with the key difference that the spinor corresponds to the valley pseudospin
of graphene, instead of a real spin. This pseudospin, generally referred to as
valley, comes from the presence of the two inequivalent A and B points in
the graphene lattice. The valley pseudospin quantum number adds an extra
chirality to the system (on top of spin). Considering both spin and valley
means that graphene bands are 4-fold degenerate unless a symmetry of the
system is lifted. Finally, solving the Dirac Hamiltonian leads to graphene’s
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linear dispersion at the Dirac points:

E±(q) = ±h̄vF |q|. (2.10)

A key concept of the graphene Hamiltonian and which will become important
when explaining TBG, is the role of inversion and time reversal symmetry.
In general, intervalley hopping in graphene is negligible [75], such that one
can consider the Hamiltonian in just one valley (as solved above around the
K valley), and take the other valley as a degeneracy. These two valleys
are related both by inversion C2 symmetry (x, y) → (−x,−y) and time
reversal T operator (which conjugates the Hamiltonian). However, when
looking inside one Dirac cone, i.e. k = K + q, these symmetries cannot be
taken individually and the Hamiltonian is invariant under the combined C2T
operation, which takes it into itself. A consequence of the C2T symmetry is
that as long as this symmetry is not broken, the Dirac cones are not gapped.
However, a broken C2 or T symmetry will gap the Dirac cone. Inversion
symmetry is for example broken by having two different atoms in the A−B
sites, (which explains the band gaps of hBN or of TMDs), while time reversal
symmetry can be broken by external magnetic fields [77]. These symmetries
play an important role in the band structure of MATBG, as is explained
below.

2.2 Bilayer graphene

Bilayer graphene is formed when two carbon monolayers are stacked on top
of each other. It appears naturally in an AB or Bernal configuration, in
which the second layer is displaced from the first layer such that its B atoms
(B2, where the 2 signals the second layer) are placed at the center of the
first layer’s hexagon while its A atoms (A2) lie directly on top of the B
atoms of the bottom layer (B1) (see Fig. 2.2a). This configuration has
a high interlayer hopping component for A2 − B1 sites given by γA2B1 =
γ1 = t⊥ ≈ 0.4eV , while the weaker interlayer hoppings γA1B2 = γ3 and
γA1A2 = γB1B2 = γ4 can be ignored [75]. We can then easily extend the tight
binding Hamiltonian of graphene to account for the second layer, by adding
the new layer elements [75, 78]:
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2.2 Bilayer graphene

Ĥ =− t
∑

<i,j>σ

(a†(1,i,σ)b(1,j,σ) +H.c.)

− t
∑

<i,j>σ

(a†(2,i,σ)b(2,j,σ) +H.c.)

− t⊥
∑
i,σ

(a†(2,i,σ)b(1,i,σ) +H.c.),

(2.11)

where am,i,σ(bm,i,σ) annihilates an electron with spin σ, in layer m = 1, 2
on sublattice A(B) at site Ri, such that the first two terms describe each
individual layer and the third term describes the interlayer hopping. If we
repeat the procedure used for graphene, we can write the Hamiltonian in
the low-momentum approximation k = K + q as:

Ĥ =
∑
k

Ψ†h(k)Ψ; now having Ψ =


a1,k
b1,k
a2,k
b2,k

 and

h(K + q) =


−V h̄vF (qx + iqy) 0 0

h̄vF (qx − iqy) −V −t⊥ 0
0 −t⊥ V h̄vF (qx + iqy)
0 0 h̄vF (qx − iqy) V

 ,

(2.12)

where V = (V1 − V2)/2 is the difference in the electrochemical potential
between the two layers. The energy eigenvalues are then given by:

E2
±(q) = V 2 + h̄2v2F q

2 + t2⊥/2±
√

4V 2h̄2v2F q
2 + t2⊥h̄

2v2F q
2 + t4⊥/4. (2.13)

When the two layers are in equilibrium (V = 0) bilayer graphene is a
semimetal with parabolic bands. However, different to graphene, a gap can
be opened upon the application of a perpendicular electric field, generally
referred to as displacement field. The displacement field breaks the inversion
symmetry between the layers by modifying their respective electrochemical
potentials. The ability to open up a gap with an electric field [79], combined
with the valley and spin degrees of freedom makes bilayer graphene very
attractive to some applications, such as for creating quantum dots which
can be used as spin qubits [80].
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2.3 Twisted bilayer graphene

After having visited the lattices and band structure of monolayer and bilayer
graphene, we can now move to the case of twisted bilayer graphene, in which
the top layer is rotated w.r.t. to the original Bernal configuration by a certain
angle θ. Before studying the band structure of the system, it is convenient
to explain the physics of moiré patterns in an hexagonal lattice.

2.3.1 Understanding moiré patterns

2.3.1.1 Moiré patterns in real space. We consider two graphene lat-

tices with primitive vectors a
(1)
1 , a

(1)
2 , a

(2)
1 and a

(2)
2 , where the super index

indicates the layer. We then assume that the second layer rotates over the
1st layer, such that when θ = 0, a

(1)
1,2 = a

(2)
1,2 (Fig. 2.2a). Then as the second

layer rotates, one can generally write a
(2)
1,2 considering the rotation matrix

in 2D R(θ), such that:

a
(2)
1,2(θ) = R(θ) · a(2)

1,2 with R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ).

)
(2.14)

As the layers are rotated, it is important to understand the difference be-
tween commensurate and incommensurate rotations, since a properly defined
superlattice will only exist for commensurate rotations. Although it is found
that for very small angles (the ones we are interested in), this distinction
losses its importance as all angles have well defined band structures in the
continuum model [81, 82], it is important to understand the concept. A
commensurate rotation is that in which there is translational symmetry in
the superlattice, such that an A2 −B1 site is found at any other position in
the superlattice primitive cell [83], as shown in Fig. 2.2b. This means that
there exists a superlattice vector (L) which brings a point in the structure
onto itself such that:

L1 = na
(1)
1 +ma

(1)
2 = pa

(2)
1 + qa

(2)
2 , (2.15)

with n,m, p, q = 0, 1, 2... L2 is obtained by rotating L1 by π/3. In the case
of the graphene lattice it can be proven that the condition is fulfilled for
n = q and m = p leading to the condition for commensurability: [84]:

cos(θ) =
n2 + 4nm+m2

2(n2 + nm+m2)
, (2.16)
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2.3 Twisted bilayer graphene

Figure 2.2: Twisting bilayer graphene. a, Two graphene sheets in an
AB-Bernal configuration, showing the lattice vectors of each layer. b, The top
graphene layer is rotated by an angle θ, showing a commensurate rotation.
The new superlattice vectors are defined by L1 and L2, which take an A2B1

position onto itself.

In general we focus on structures given by |m− n| = 1, in which there is
one moiré pattern per unit cell, and are therefore the most fundamental
structures [85]. In that case we obtain the simplified equations [33]:

cos(θ) =
3n2 + 3n+ 1/2

3n2 + 3n+ 1
and L1 = na1 + (n+ 1)a2, (2.17)

where n is now a general integer and λM = |L|. The area (As) and number
of atoms per moiré unit cell (N) is given by [86]:

As =

√
3

2
λ2M =

√
3

8

a2

sin2(θ/2)
,

N = 4(3n2 + 3n+ 1).

(2.18)

As the moiré area increases with decreasing twist angle, it is clear how for
small twist angles the number of atoms per moiré unit area increases enor-
mously. Indeed, for angles around the magic angle condition (θ ≈ 1.1°,
n ≈ 30), N ∼ 104 atoms. This very large number of atoms per unit cell (ex-
emplified in Fig. 2.3a), compared to monolayer and Bernal bilayer graphene
, makes the calculations with tight binding very computationally demand-
ing. A simplified description at low energies and low momentum values is
the continuum model [33, 34], which is the main focus of the the following
section.
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2.3.1.2 Moiré patterns in k−space It is convenient to also look at
the reciprocal space representation of the moiré pattern. When the two real
space lattices are rotated, the reciprocal lattices will also rotate (see Fig.
2.3b). If we consider the rotation to happen around the Γ point, we see how
the moiré wave vector will be given by the difference in position between the
K points of the original lattices, such that:

kθ = 2 sin(θ/2)kD, (2.19)

where kD = 4π/3a is the magnitude of the Dirac point wavevector. Using
kθ we can define a new mini-Brillouin superlattice, which corresponds to the
moiré superlattice in real space. As there will be one superlattice created for
K and K ′ points of the original lattices, the valley degeneracy of graphene is
also inherited by the twisted bilayer system. Although the superlattice Ks

points, are a combination of K and K ′ points of opposite layers, the valley
is preserved due to the large momentum difference between these points
in the original graphene Brillouin zone [37]. Considering then the 4-fold
degeneracy, the carrier density needed to have a full mini-Brillouin zone is
the superlattice carrier density:

ns = 4/As = 4
8 sin2(θ/2)√

3a2
≈ 8θ2√

3a
for small θ, (2.20)

where As is the unit cell area and the four comes from the 4-fold degeneracy
of valley and spin. This relation can be used to extract the twist angle of
the experimental samples as is explained later in Ch. 3.

2.3.2 Flat bands in MATBG

We now turn to the band structure description of MATBG. Due to the
large number of atoms present in the moiré super cell, the tight binding
Hamiltonian becomes very computationally demanding as the angle gets
reduced. As we are interested in studying the conditions at very low angles
θ ≈ 1.1°, we will focus on the continuum description of the Hamiltonian [33].
Furthermore, the continuum model can be used to predict the presence of
flatbands at the magic angle conditions [34, 86]. Due to the complexity of
the system in this section we will not write the derivation of the Hamiltonian,
but just comment on the main aspects that it entails.

The initial point of the continuum model is to consider the TBG band spec-
trum as two sets of monolayer Dirac cones which rotate around the Γ point
(as in Fig. 2.3c). As just explained, this rotation creates a moiré superlattice
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2.3 Twisted bilayer graphene

Figure 2.3: MATBG moiré pattern and mini-Brillouin zone. a, Com-
mensurate structure showing the moiré pattern in real space with moiré wave-
length λM . From the figure it is already clear the large amount of atoms which
sit inside one moiré lattice (even though this is a much larger angle than 1.1°).
c, Reciprocal space representation of the moiré pattern, dictated by the moiré
wavevector kθ. The figure is inspired by [37].

with wavelength λM and wavevector kθ. As the layers rotate, the cones at
each valley, K1 −K2 and K

′
1 −K ′2 hybridize, such that the Hamiltonian can

be expressed as the sum of two intralayer terms H1 and H2 and an interlayer
hopping term HT . The important parameter to consider during the twisting
is the evolution of the hopping term HT . Interestingly, it is found [34] that
the bands of the moiré graphene depend mostly on a single factor:

α =
w

h̄vFkθ
, (2.21)

where w is the hopping energy between the layers and kθ is the already
mentioned moiré wavevector. The parameter α can be understood as a pa-
rameter showing the competition between the hybridization of the Dirac
cones, expressed with w, and the kinetic energy of the electrons, expressed
by h̄vFkθ. As kD ∝ θ, we can expect that as the angle becomes smaller, the
bands not only hybridize further as the tunneling probability increases (the
Dirac cones are closer together), but the kinetic energy also decreases (kθ be-
comes smaller). As this happens, the Fermi velocity is strongly renormalized
[34]:

v∗ = v0
1− 3α2

1 + α2
, (2.22)

with v0 the Fermi velocity of graphene. Following this relation we see how
for large twist angles, α is small and the low-energy dispersion of the the
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twisted graphene is barely affected. However, as the twist angles get reduced,
α increases and the Fermi velocity is heavily renormalized (see Fig. 2.4). In
particular, for certain α values, the renormalized Fermi velocity vanishes
(v∗ → 0 ). These values correspond to the so-called magic-angles. As α
increases from 0, the first magic-angle condition is found for α = 1/

√
3,

which gives the first magic-angle value of:

θ = arcsin

( √
3w

h̄v0kD

)
· 2 ≈ 1.1◦. (2.23)

Most interestingly, the Fermi velocity renormalization is accompanied by the
flattening of the bands, such that at the first magic-angle θ ≈ 1.1°, the low
energy bands sit a few meV around the Fermi energy [39]. The flattening of
the band is accompanied by several key points: 1. The density of states in the
flat band is enhanced due to the appearance of van Hove singularities (VHS)
with the twist angle. As the angle gets reduced and the band gets flatter the
VHSs come closer together making the density of states peak around the flat
band energy range [28, 87]. 2. At the same time, a gap is opened around
the ΓS point, near the intersection of the two Dirac cones, due to the band
hybridization (transition from Fig. 2.4b and c), such that the low energy
flat bands are isolated from the higher energy dispersive bands by a band
gap of ∼ 50 meV [37]. 3. The interactions do not gap out the Dirac points
at the K and K ′ points. This way the band structure of MATBG consists
(generally speaking) of a 4-fold degenerate flatband, separated by an energy
gap from the higher dispersive bands (as shown in Fig. 2.5a). 4. Each flat
band (4 for electron and 4 for hole side) of MATBG is characterized by a
Chern number of C = ±1 [88, 89]. The Chern numbers will be relevant
when the C2T symmetry is broken, such as breaking C2 symmetry when
aligning to hBN [51, 50] or breaking T by applying magnetic fields or, most
interestingly, when strong interactions are present [52]. The latter will play
a key role in MATBG as it allows to stabilize Chern insulating phases even
at zero magnetic fields [50, 90]. As breaking C2 or T have a different effect
on the Chern numbers at each valley, it is possible (in some cases) to infer
which symmetry is broken from the measured Chern number (see Fig. 2.5b,
d.)
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2.3 Twisted bilayer graphene

Figure 2.4: Flat band formation with twist angle. a, The twist angle
between the layers is high. The material behaves as two independent graphene
sheets. b, As the angle gets reduced 3°< θ < 10°, the bands start to hybridize.
The correction to the Fermi velocity is still small. c, At the magic-angle
condition θ ≈ 1.1° the strong hybridization makes the bands flat and vF → 0.
The bottom panel of the figure is adapted from [39].

It is interesting to look at the internal structure of the flat band and what
happens as it is filled (or emptied) from CNP towards the flat band edge. A
relevant concept is the filling factor of the flat band ν, which represents the
number of electrons per moiré lattice, such that the flat band is full/empty
for ν = ±4. In principle the band structure is 4-fold degenerate such that
the 4 bands should be filled simultaneously. However, as the carrier density
reaches integer filling factors of the flatband, that is, every time ν = ±1, 2, 3
electrons per moiré unit cell, the bands undergo a transition which breaks
the degeneracy. This behavior was observed via STM [47], local compress-
ibility [46] and capacitance [91] measurements, pointing to the appearance
of broken flavor symmetry states at every integer filling of the flat band.
Here, flavor is used as an umbrella term including both spin and valley de-
grees of freedom. When the band is empty ν = 0 (CNP), initially all the
bands are filled simultaneously showing a 4-fold degenerate Dirac-like be-
havior. However, every time time an integer filling is being reached, there
is a symmetry breaking transition in which one band gets filled while the
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Figure 2.5: Band structure of MATBG and its broken symmetries.
a, MATBG band structure schematic and its corresponding DOS showing the
VHS peaks. b, Schematic of non-interacting band structure of MATBG, show-
ing the 4-fold band degeneracy for the hole and electron band. c, Schematic
showing the flavor breaking as the band is filled, showing the density of indi-
vidual flavors ni(i = 1, 2, 3, 4) vs. band filling ν. d, Schematic showing the two
possible scenarios of C2T symmetry breaking and their different Chern num-
bers in each valley. The vertical arrows signal the sign of the opened mass gap,
being the same for the C2-breaking case and opposite for the T -breaking case.
The bands preserve their spin degeneracy in this picture. Figure is adapted
combining a from [87], b and d from [52] and c from [46].

other three bands empty themselves. This behavior is repeated every time
an integer ν is reached until all the bands are filled (see Fig. 2.5c). These
transitions should change the degeneracy at different fillings, corresponding
to 4, 3, 2, 1 at fillings ν =0, 1, 2 and 3. Such behavior is indeed measured
when breaking time-reversal symmetry by applying a magnetic field and
measuring the Landau fan, where there is a Chern number (C) correspon-
dence with ν following (C, ν) → (±4, 0), (±3,±1), (±2,±2) and (±1,±3)
[91, 52, 54, 41]. This symmetry breaking is accompanied by spin/valley po-
larizations, as these are the broken degeneracies. However, the developed
spin/valley texture depends on many factors, such as interaction strength,
angle, etc. such that one cannot know a priori the formed state.
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2.4 Superconductivity and Josephson junctions

2.4 Superconductivity and Josephson junctions

Superconductors are materials that exhibit zero resistance when cooled down
below a critical temperature Tc, such that an electrical current can flow
in them with no electrical resistance [58]. Since its discovery in mercury
in 1911 by Onnes and collaborators, it has been a great topic of research
due to its potential high impact in technology. The zero-resistance state of
superconductors lead to perfect diamagnetism when exposed to magnetic
fields, as a current opposing the field can be spontaneously generated with
no energy cost. So-called type-I superconductors expel the field this way
until superconductivity is lost at a critical field Hc. At the value of Hc, the
SC is not able to create a strong enough current to screen it. The maximum
current that the SC can create before turning normal is the critical current
Ic. Other superconducting materials (type-II SC) screen the field below a
critical field Hc1 but, as the field increases further, they allow field lines
to penetrate in the material in the form of vortices, making part of the
material normal (inside the vortex). Each vortex encloses a flux Φ0 =

h2

2e
, the

superconducting flux quantum. As the field and density of vortices increases
further, the whole material eventually becomes normal at the second critical
fieldHc2. Importantly, although the material expels the magnetic field, there
will always be a length scale in which the magnetic field still penetrates the
material. This is called the London penetration depth λ. Whether a SC
is type-I or type-II is related to the ratio between the London penetration
depth and the coherence length, which is explained below.

The most successful theory to explain superconductivity is the BCS theory,
named after its developers Cooper, Bardeen and Schrieffer [92]. It is based
in the main ideas that superconductors have a band gap and that the super-
current is carried by pairs of electrons which lie inside this band gap. The
supercurrent is carried by Cooper pairs, which are pairs of electrons (with
charge 2e) having opposite momenta and spin (at least in conventional SC).
Cooper pairs form due to an attractive electron-electron interaction medi-
ated by phonons which below Tc makes it energetically favorable for elec-
trons to form pairs rather than stay apart. The pairing energy ∆ will yield
the value of the band gap (2∆), which corresponds to the energy needed
to break these Cooper pairs. Importantly, as Cooper pairs are effectively
bosons, they create a condensate, in which the SC is defined by a global
wave function ψ ∼ |ψ|eiϕ, where ϕ is a phase component which gets locked
during the SC transition of the material. The length scale of the pairing
potential ∆ is given by the coherence length ξ, a magnitude that defines the
size of the Cooper pairs. The coherence length plays a key role when putting
a SC in contact with a non-SC material. In this case, the non-SC material
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2 Theoretical Background

will be affected by the SC condensate in a length scale in the order of ξ.
Specifically, ξ will have an exponentially decaying behavior at the interface,
which will induce superconductivity in the non-SC material in that region.
This induced SC behavior is called the proximity effect, and is essential to
understand the formation of Josephson junctions. In this framework, we can
define the Tc and ξ in terms of the gap as:

∆ ≈ 1.764kBTc and ξ =
h̄vF
π∆

, (2.24)

where vF is the Fermi velocity of the proximitized material and kB is the
Boltzmann constant.

It is important to note that not all SCs can be explained by the BCS theory.
For more complex materials, the attractive potential might not be a simple
electron-phonon coupling, but it can be coming from enhanced electron-
electron interactions [93, 94]. Materials which do not follow BCS theory, are
generally called unconventional superconductors, and they typically have a
SC wave function or order parameter which is anisotropic either in magni-
tude or phase [95]. The names of the symmetries are given by the shape
of the wave function inspired by the nomenclature used for atomic orbitals,
such that there are s-wave, d-wave, p-wave and f -wave superconductors,
among others. BCS superconductors usually have an s-wave symmetry, hav-
ing an isotropic magnitude and single phase. Some of the most important
family of unconventional superconductors are the high temperature cuprate
superconductors (with Tc > 70 K). These have d-wave symmetries, having
an anisotropic magnitude and a phase which changes sign with momentum:
sgn(ϕ(k+)) = −sgn(ϕ(k−) [96, 97]. Although some of these materials were
discovered ca. 40 years ago [98], there is yet no theoretical consensus of
their unusual properties [99]. That is one of the reasons why understand-
ing the SC in MATBG could be very interesting. MATBG is in principle
a simple material (it is all carbon atoms) which has very strong electron-
electron interactions, has magnetic ordering, a strange metal phase above
the superconducting Tc and presents superconductivity next to correlated
insulator states. These features are generally found in unconventional SCs
with high Tc, not just in cuprate based, but also in Fe-based SC or heavy
fermion systems [100]. It is then natural to think that if the origin of the SC
in MATBG was understood, this could help understand other SC materials,
or even engineer new ones [101].
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2.4 Superconductivity and Josephson junctions

2.4.1 Josephson junctions

A Josephson junction (JJ) is a device in which a non-superconducting ma-
terial or weak link is intercalated between two superconductors. As the two
superconductors are not directly connected, each of them will have a global
wave function ψ, which will have a different phase ϕ in each superconduc-
tor, having ψ1 ∼ |ψ|eiϕ1 and ψ2 ∼ |ψ|eiϕ2 (considering the same SC material
for both sides of the junction). The behavior of Josephson junction are
characterized by the two Josephson equations: [102]:

� DC Josephson effect: a current is spontaneously driven across the
junction when there is a phase difference between two superconductors:

I(ϕ) = Ic sinϕ, (2.25)

where ϕ = |ϕ1 − ϕ2| is the phase difference across the junction and Ic
is the critical current of the junction. This equation implies that the
current will oscillate modulo 2π with ϕ.

� AC Josephson effect: as a DC voltage is driven through the junc-
tion, the phase will vary on time:

dϕ

dt
=

2e

h̄
V. (2.26)

When combined with the first Josephson equation, this implies that
an externally applied DC voltage will produce an alternating current
in the junction:

I = Ic sin

(
2eV

h̄
t

)
. (2.27)

The inverse is also true, such that when the JJ is irradiated with a
radio frequency ω, a DC voltage is produced every time V = nh̄ω

2e
, with

n an being an integer. This response produces a set of steps in the IV
curve which are called Shapiro steps.

The length of the JJs are limited by the coherence length of the SC materials.
To a first approximation, to properly define a junction, the length of the
junction (L in Fig. 2.6a) needs to be in the same order of magnitude as
the ξ of the SC, such that there is an overlap between the ξ of both SC
electrodes. This will be important later in the fabrication of the junctions.
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2 Theoretical Background

2.4.2 Josephson junction under a B−field

When a Josephson junction is placed under an external perpendicular mag-
netic field B the Ic will decay in an exponentially oscillatory manner, creat-
ing what is called a Fraunhofer pattern. The reason lies in the fact that the
global wavefunction ψ = |ψ|eiϕ needs to be single valued across the junc-
tion. This can be seen by taking a contour integral along the junction and
studying how the phase evolves with the external flux [58]:

Φ =

∮
A · dl = (Φ0/2π)

∫
electrodes

∇ϕ · dl +
∫
link

Adl, (2.28)

where A is the vector potential. Since the phase ϕ must be single valued,
the sum of the phase integrals must be equal to mod 2π. This means that
the phase difference between the electrodes is given by:

ϕ1 − ϕ2 = 2π
Φ

Φ0

(mod 2π). (2.29)

This relation implies that ϕ1 and ϕ2 cannot be simultaneously equal to π/2
unless Φ = BA = nΦ0 with A the area of the junction and n = 0, 1, 2....
Therefore, in order to have the maximal supercurrent flowing through the
junction, the phase across the junction will periodically oscillate with posi-
tion x (see Fig. 2.6b), This way, every time time Φ = nΦ0, there will be a
full number of oscillations of the phase across the junction. Each oscillation
effectively acts as a vortex inside the junction area, and these can therefore
be referred to as Josephson vortices. Following this structure, the maximum
current (Im) inside the junction at any given magnetic flux is given by:

Im(B) = Ic(B = 0)

∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣. (2.30)

This oscillatory decaying pattern is similar to the single-slid experiment in
optics and is thus referred to as Fraunhofer pattern. If the current inside
the junction is not homogeneous, this simple solution is modified by a more
general Fourier transform. That will be explained more in detail in Ch. 6.

2.4.3 2D Superconductors

As MATBG is a 2-atom thick SC, it is convenient to look briefly at the
theory of 2D superconductors. In a 2D superconductor, the film thickness
is smaller than the London penetration depth λ and the coherence length
ξ. In this case, the ruling length scale is the Pearl screening length Λ =
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2.4 Superconductivity and Josephson junctions

Figure 2.6: Properties of a Josephson junction. a, Schematic of a
Josephson junction and the decay of coherence length across the junction (bot-
tom). b, Josephson junction under a magnetic field. As the field increases the
current oscillates along the x direction (signaled by the current direction in
the figure) to keep the single valued condition of the phase across the junction.
The right plot is an example of a Fraunhofer pattern.

2λ2/t, where t is the film thickness [103] and the long-range order of the
SC state is dictated by a Berezinskii–Kosterlitz–Thouless (BKT ) transition
[104, 105]. The BKT theory explains how a 2-dimensional system undergoes
a phase transition to an ordered phase with an order parameter having both a
magnitude and a phase (such as the SC state). Below the BKT temperature
TBKT the thermal excitations of the superconductor form vortex–antivortex
pairs which bind together through an attractive 2D Coulomb force. The
BKT theory predicts a non-linear I−V characteristics for T ≥ TBKT which
scales as V ∝ I3 [106]. This dependence will be used in the experiments to
extract TBKT in MATBG experiments.

Finally, we look at the behavior of a JJ made with 2D SC materials, specif-
ically at its behavior with magnetic field. In the 2D limit, as the thickness
is smaller than λ, the magnetic flux can penetrate into the superconductor
(thus not displaying Meissner) and the spatial distribution of magnetic field
in the material is governed by the above mentioned Pearl length. It has been
previously shown [107, 108, 109] that in this case the critical current of a 2D
JJ under a perpendicular magnetic follows the relation ∆B2D ≈ 1.8Φ0/w

2,
where w is the lateral size of the junction. This is different from a 3D bulk
JJ [58], where the period of the oscillations follows ∆B3D ≈ Φ0/wL where
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L is the length of the junction. Considering a JJ with a realistic Hall bar
geometry of w ≈ 1.2 ± 0.1 µm and L ≈ 100 nm), ∆B3D is estimated to
be ∼ 16 ± 1 mT, while ∆B2D ∼ 2.5 ± 0.5 mT. Calculations for both cases
are shown in Fig. 2.7 to display the clear difference of the behavior. The
equation for the 2D superconductors will be later used in the analysis of our
JJ devices in Ch. 6.

Figure 2.7: Fraunhofer pattern of a 2D vs. 3D superconductors. The
2D JJ oscillate at a much higher frequency than the 3D counterpart.
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3 Materials and Methods

This chapter is divided in two main sections: sample fabrication and trans-
port measurements. The section on sample fabrication discusses the proto-
col for the fabrication of MATBG in great detail. We start by explaining
the process for the assembly of the van der Waals heterostructure and then
explain the nanofabrication steps to create the devices. Apart from the tech-
nical details of the process, an emphasis is made to explain the little details
which can make a big difference in the success of the fabrication process.
The remainder of this chapter deals with the instrumentation and the basics
of lock-in transport measurements, ending with some details about measur-
ing MATBG. These include pre-screening devices at room temperature and
extracting the twist angle at low temperature.

3.1 Sample fabrication: stacking and

nanofabrication

The first step in the experimental process is the creation of the magic an-
gle graphene heterostructures. The final devices will consist of a double
graphite-gated Hall bar geometry of MATBG encapsulated in hBN as shown
in Fig. 1.5. The two-dimensional (2D-) materials are assembled together us-
ing a modified dry-transfer technique [110, 21, 111, 38], referred to as the
stacking process, in which a polymer stamp is used to assemble 2D materials
in a layer by layer fashion. The process is designed with a focus in achieving
the cleanest and most stable heterostructure which is important to avoid the
relaxation of the twist angle away from the magic angle and reduce angle in-
homogeneity. The explanation of the process highlights the details in careful
flake selection, meticulous stack planning and precise control throughout the
stacking process. First, we discuss the details of the exfoliation and flake se-
lection, followed by a comprehensive explanation of the stacking procedure,
emphasizing key points that can significantly impact the yield of the twisted
devices. Finally, the stack is fabricated into a measurable electronic device
via nanofabrication techniques, namely e-beam lithography, dry etching and
metal deposition.

3.1.1 Stamp making

For the dry-transfer process we use a so-called stamp, a polymer heterostruc-
ture consisting of a small square of ca. 2×2 mm of 1 mm2 thick commercially
available polydimethylsiloxane (PDMS) covered by a polycarbonate (PC)
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film mounted on a glass slide, which is made following the work of Zomer
et al. [111]. The PDMS is used to act as a soft viscoelastic cushion when
approaching to pick up the flakes and the small size is chosen such that the
contact point of the PC (which we generally refer to as the wavefront) with
the Si surface can be easily controlled. The decision to use PC as the ad-
hesive layer is motivated mainly by its high adhesion properties to the used
materials and because it permits to perform the stacking process at higher
T than other materials such as polypropylene carbonate (PPC) [112]. As is
explained in detail later, the higher temperatures enhance the quality of the
transfer process.

To make the PC film first a a 6% (w/w) solution of polycarbonate dissolved
in chloroform is made by introducing PC pellets in a beaker with chloroform
and magnetically stirring overnight at room T . Once the PC is fully dissolved
the solution is kept tightly closed and can be used for several weeks. As the
chloroform will evaporate over time, the concentration will change making
the solution no longer usable. The PC film is then made by transferring a
few drops of the PC film onto a glass slide. To have a homogeneous film a
second glass slide is pressed onto the first one and they are slid on top of
each other leaving a homogeneous film on both glass slides (process shown
in Fig. 3.1). We have found that films which give the best results are 2 –
3 µm thick. Finally the glass slides with the PC film are put in a hot plate
at ∼ 100 °C for 2 min to evaporate the excess chloroform and improve the
homogeneity of the PC film.

The procedure to make the stamps is shown in Fig. 3.2 and is as follows:

� A small square of PDMS of ∼ 2 × 2 mm2 is placed on top of a clean
glass slide.

� The PC film is cut into squares of about 1 × 1 cm.

� A hole larger than the PDMS square is made in a piece of scotch tape.
The hole is used to expose the PC only in the region where there is
PDMS below.

� A square of PC is picked up with the scotch tape and transferred on
top of the PDMS. When transferring the PC film on top of the PDMS
it should remain flat, without visible wrinkles.

� The extra scotch tape is cut. The stamp is now finished.

� After finishing the stamp, it is heated to 120 °C for about 5 min. This
will soften the PC as it approaches its glass transition temperature

30



3.1 Sample fabrication: stacking and nanofabrication

Figure 3.1: PC film making process. a, A syringe is used to pour a few
drops of PC solution on a glass slide. b, The PC solution poured on the glass
slide. c, A second glass slide is placed on top of the one with the PC solution.
d, The second glass slide is slowly released leaving a homogeneous PC film on
both surfaces.

Tg ≈ 147 °C, making it conform better to the PDMS and thus improv-
ing its adhesion to it.

3.1.2 Exfoliation

The 2D materials which will be used during the fabrication process are
obtained by mechanical exfoliation onto a Si substrate with a capping layer
of 285 nm SiO2. The 285 nm SiO2 substrate is used for its optical contrast,
which allows to easily see monolayer graphene flakes [113]. The exfoliation
process for graphene, hBN and graphite is similar, following mainly the
process developed by Huang et al.: pre-cleaning the chips in O2 plasma and
heating up the substrate to ∼ 100 °C for ∼2 min to increase the exfoliation
yield [114]. First, I will describe the process to exfoliate graphene and then
explain the differences for hBN.

3.1.2.1 Graphene exfoliation The procedure to exfoliate graphene is
shown in Fig. 3.3 and is as follows:

� The Si/SiO2 chips are cleaned with O2 plasma for 3-5 min. The O2

plasma removes ambient adsorbates from the surfaces of the chips,
increasing its adhesive properties. This increases the yield of usable
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Figure 3.2: Stamp making process. a, A PDMS square is placed on top
of a clean glass slide. b, A hole larger than the PDMS square is cut on a scotch
tape piece. c, The PC film is cut into small pieces to be picked up. d, The cut
scotch tape is used to pick up the PC film. The back of the tweezers is used
to ensure good contact between the tape and the PC film. e, The tape with
the PC film is slowly released to avoid breaking it. f The PC film is placed on
top of the PDMS. After cutting the excess tape the stamp is finished.

flakes which will be attached to the surface during the exfoliation pro-
cess.

� A crystal of graphite is placed on a scotch tape. The crystal is then
removed, leaving a large piece of graphite on the tape.

� The tape is folded several times (∼ 7-8 times) until most of it is covered
in graphite flakes. The aim is to cover as much tape as possible with
the minimum number of folds, as each fold will reduce the size of the
potential graphene flakes.

� Once the tape is homogeneously covered in graphite flakes, it is pressed
against the cleaned Si/SiO2 chips to attach the flakes to the surface of
the chips.

� The chips are then placed in a hot plate at ∼ 105 °C for 2 min. The
heating increases the contact between the flake and the SiO2 by re-
moving gas from the interface, and thus increasing the van der Waals
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forces between them. However during heating the glue in the tape will
also adhere to the SiO2 surface, leaving unwanted residues around the
graphene flakes. The longer the heating time the more residues there
will be. In general, heating for 2 - 3 min gives a good equilibrium
between a high exfoliation yield and few residues, while heating for
longer will give too many tape residues, therefore being detrimental
for the process.

� After removing the tape from the hot plate, it is left to cool down for
∼10 - 20 sec. Then the tape is peeled off from the chips very slowly.
The slow motion is very important to avoid flakes from breaking, ob-
taining larger flakes. The waiting time before peeling the tape allows
to remove the tape more slowly, as otherwise the glue will be too soft
and the peeling off will be less controlled.

The exfoliation works such that the graphene flakes experience van der Waals
forces both to the tape and the SiO2 chips. When the tape is removed, the in-
teraction between graphene and SiO2 overcomes the vdW forces between the
layers, making the flakes cleave leaving atomically clean surfaces exposed on
the SiO2 flakes. In this way, flakes of many different thicknesses are obtained
on the SiO2 chips. We are interested both in large monolayer graphene flakes
which can be used for the MATBG, and thicker smaller graphite flakes which
can be used for metallic gates. These can be distinguished by their optical
contrast on the 285 nm SiO2 chips. Monolayer graphene looks very similar
to the light purple background color of the SiO2 (see Fig. 3.4), while thicker
graphite flakes will have a darker purple color. Once the color becomes blue,
the flakes are too thick for our purposes.

3.1.2.2 hBN The hBN crystals are exfoliated in a very similar manner,
with a few key differences:

� The original hBN crystals are much smaller than graphite, such that in-
stead of starting with a single large crystal (as in the case of graphene),
we start using several smaller hBN crystals.

� “Daughter” tape. The folding of the tape is done in a similar manner
until the tape is heavily covered in smaller hBN crystals. However, in
this case, the crystals are usually too thick to directly exfoliate in Si
chips. Therefore in general a “daughter” tape is obtained by using a
second tape and exfoliating from the first “mother” tape (see Fig. 3.5
for an example). The “mother” tape can be used for several “daughter”
tapes. In general if the crystals on the tape are very bright, this
will lead to very thick hBN crystals which are not useful for stacking.
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Figure 3.3: Graphene exfoliation. a, A graphite crystal is placed on top
of the scotch tape. b, The crystal is removed, leaving the exfoliated crystals
on the tape. c, The tape is folded to exfoliate the crystal, filling the tape with
several thinner graphite crystals. d-f The crystals are exfoliated until covering
the whole tape. g, A chip is placed on the tape region with graphite and gently
pushed on the back. h, Several chips are placed on the tape. i, A soft tissue
is used to press the chips on the graphite crystals to increase the exfoliation
yield. j, After pressing, the chips are properly attached to the tape with the
graphite crystals. k, The chips are placed on a hot plate at ∼105 °C for 2 min.
l, Finally the chips are slowly peeled off from the tape. The scale bar in a is 5
mm.
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Figure 3.4: Graphene exfoliation results. a-b, Good graphene flakes:a,
shows an elongated flake while b, shows a larger flake . Both of these could
be used for making TBG samples. c-d, Not usable flakes: c, Good graphene
flakes, but too close to a larger graphite flake, making it very hard to use them.
d, Small flake and with several defects. Upon cutting it in two, it would be
too small to use it for fabrication. Scale bar is 10 µm.

Once the crystals in the tape have a more grayish, not-so-bright color,
the crystals are too thin and they cannot be used anymore to create
“daughter” tapes. Once the “daughter” tape is made, it is directly
used to exfoliate on the Si/SiO2 chips. Making the “daughter” tape
more dense by folding it again with itself is likely to break the crystals
into very small pieces which are not useful for the stacking process.

� The chips are not heated prior to the exfoliation process. Although
using a hot plate can increase the exfoliation yield, in the case of hBN
the tape is not as dense as in the case of graphite, which means that
there will be too many tape residues on the final chips. However, it is
still important to wait a few minutes with the chips on the tape before
removing it.

� Less force is applied to the chips in comparison to the exfoliation of
graphene. If the hBN is pressed too hard the flakes will break leaving
much smaller flakes than desired.

3.1.2.3 Top gates A final note is made for exfoliating the graphite that
will be used as top metallic gates. In general, PC adheres to hBN more
strongly than to graphite. Therefore, during the stacking process, PC can
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Figure 3.5: hBN exfoliation with “daughter” tape. a, Original tape
with the hBN exfoliated crystals. The tape is full of bright crystals. b, A
“daughter” tape is exfoliated from the original tape.

Figure 3.6: hBN exfoliation results. a-c Good hBN flakes. All the flakes
could be used for stacking. a, or c would be good example for top flakes since
they have a sharp edge which we can use to align with the cut graphene edge.
d-f, Not good flakes. d, Good flake but with a fold (marked by the red arrow)
that could break the stamp during the stacking. e, Good looking flake, but
having different thicknesses, this is not desired since it will give different gating
profile along the device. f, Good flake with thicker regions attached to it. Scale
bar is 10 µm.
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Figure 3.7: Graphite flakes. a-b, Good graphite flakes. Elongated, about 3
µm wide and not too thick. b shows a good bottom gate flake, having a kink,
which will make it very easy to contact later on. c-d, Not usable graphite
flakes. c shows two flakes together, while d shows a non-straight flake. Both
are undesirable. Scale bar is 10µm.

be used to pick up hBN from the Si chips by using the right temperature
range while picking up graphite or graphene flakes has a lower success rate,
resulting in broken flakes after the pick up process or not picking up the
flakes. As in the double gated devices, the graphite is the first layer which
is picked up during the stacking process it is essential to have a reliable
pick up of the graphite flakes. The key to achieve this reliable pick up is
to exfoliate the graphite flakes which will be used for top gates without O2

plasma cleaning of the surface of the SiO2, as previously reported [115, 21].
Although this reduces the yield of the exfoliation, the flakes can be more
reliably picked up. In this way the reduced number of flakes is compensated
by the fact that most of the obtained flakes will be easily picked up during
the stacking process.

3.1.3 Flake selection and stack organization

Prior to the stacking process, all the potential flakes are cataloged, and a
tentative plan is made by choosing the best fitting flakes for a stack. This
allows to carefully think of the size, shape and moreover compatibility of
different flakes to be used and minimizes errors during the stacking process.
There are several considerations for the individual flakes as well as relations
between the different flakes of the stack (As shown in Figs. 3.4, 3.6 and
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3.7). In general, the first order criterion in identifying viable flakes is how
pristine and homogeneous they are. Selected flakes should have no tape
residues, nor step-terraces and should be well isolated from nearby bulky
flakes which typically causes problems during the stacking process. Then,
there are certain constraints to consider regarding the different materials.

The graphene flake for MATBG should be at least twice as large as the
desired device size. Flakes which are ∼10 - 15 µm × 15 - 30 µm are typically
desired, such that the final devices are ∼ 10 µm long. The hBN flakes
should fully encapsulate the graphene and are chosen to be 10 - 20 nm
thick for several reasons. Firstly, thinner hBN flakes make the stacking
smoother, aiding to avoid unexpected rapid movements or “jumps” in the
stamp during the stacking which can give rise to bubble formation [110].
In general, we aim to minimize bubble formation as much as possible since
it significantly contributes to angle inhomogeneity [116]. However, if the
flakes are too thin (i.e. below 5 nm), they tend to tear during the stacking.
Secondly, spotting dirt or defects in the optical microscope is easier in thinner
flakes. Finally, a thin top hBN allows to see through during the stacking,
which is helpful when making multilayered stacks: for flakes thicker than
20 nm, seeing the graphene layers and/or the bottom graphite flake can be
challenging. Graphite gates are chosen to be ∼2 - 4 nm thick, 3 - 6 µm wide
and 10 - 15 µm long. The width is chosen such that the arms of the Hall
bar which extend beyond the width of the device can be gated away from
the charge neutrality point using the highly doped Si substrate, which helps
minimize the contact resistance. Flakes below four layers are avoided due
to their complex properties, including magnetism in rhombohedral trilayer
graphene [99], and their insufficient screening of the charge puddles in the
SiO2 substrate [117], while thicker flakes are also avoided since they would
induce more strain to the final stack, i.e. as they are narrower than the
twisted graphene regions, they would produce a larger curvature the thicker
they are [118]. The bottom gate needs to be longer than both the graphene
and the top gate, such that the part that extends beyond them can be easily
contacted during the lithography process. Finally, the top gate should be
wider than the back gate. This way the region gated only by the top gate,
can be also gated with the Si gate. This is very important in MATBG due
to the existence of highly resistive states which can completely dominate the
measured signatures otherwise, as is explained in detail in the next chapter.

3.1.4 Transfer stage

The dry transfer stacking technique is done using a so-called “transfer stage”
or “stamping setup”. The transfer stage consists of a modified microscope
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in which the van der Waals heterostructure assembly can be performed. The
main components of the transfer stage are (see Fig. 3.8 for reference of the
different parts):

(a) Heavy table for vibration stability and screw holes to hold the different
pieces.

(b) Sample stage platform with X-Y and rotation control. In order to ac-
curately rotate the two graphene sheets by an angle of 1.1°, the sample
stage (b1) is placed on top of a goniometer (b2). The goniometer used in
this thesis had a precision of 0.0016°, giving a sufficiently precise angle
control for the fabrication of MATBG.

(c) Micromanipulator stage. A metallic “arm” (c4) which extends towards
the sample stage where a glass slide with the stamp can be held during
the assembly process. The X-Y manipulators (c1) are used to move the
stamp around the sample to choose the right region and the Z manip-
ulator (c2) is used to control the height and therefore make contact or
retract the contact from the sample. An important feature of this stage
is to have control over the tilt angle on the X-Y plane (c3). By setting
the right tilt, the angle at which the stamps will make the contact with
the sample can be controlled. This allows to control the stacking di-
rection and the smoothness of the contact between the stamp and the
sample. Having a very large tilt angle a large force will be put on the
PC film, while having a low angle will not allow to control the point of
contact, nor the wavefront of the PC film.

(d) Vacuum pump and valves. Vacuum is used to keep the sample, the
stamp arm and the stamp in place during the stacking procedure.

(e) Long working distance objectives. The microscope used for the transfer
stage needs to have long working distance objectives in order to focus
on the sample while looking through the stamp.

(f) Temperature control. A heater and thermometer are enclosed in the
sample stage to control the temperature. The temperature control is
used to change the properties of the PC film during the stacking proce-
dure.

(g) Binoculars to search for flakes and follow the stacking procedure.

(h) Aperture diaphragm control lever. During most of the stacking process
the sample will be focused through the glass slide having the PDMS/PC
stamp and it will be key to be able to properly focus on the stamp itself.
This will affect the resolution of the microscope, making it hard to focus
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correctly. In order to avoid this issue the aperture control feature of the
microscope is frequently used. This setting closes the aperture of the
light path, having a two-fold effect: increasing the focal length and
reducing the scattered light from the sample. These combined effects
allows to properly focus on the sample and/or see the flakes on the
stamp. The aperture control can also be used to increase the visibility
in defects on flakes. Examples of its use are shown in Fig. 3.9.

(i) Camera and imaging software. Most of the stacking is done with the
image acquired by the camera and using the imaging software of the
microscope. This is specially important for the stacking procedure for
three main reasons. Firstly, changing the contrast and color saturation
of the camera will allow to see defects in flakes which are not visible
with the naked eye. Secondly, it allows to outline the shapes of the
different flakes. For double gated stacks this is very important for the
last step, in which the top and bottom gates will be aligned. As more
layers are picked up with the PC stamp, visibility through the layers
decreases. That means that depending on the thickness of the chosen
graphite gate and mainly hBN flakes, it is possible that when picking up
the bottom graphite gate, the top graphite gate is no longer visible. In
this case, having outlined where the top gate is positioned with respect
to the other flakes enables a proper alignment with the bottom gate.
The same applies to the graphene, which will not be visible once the
bottom hBN is picked up. Finally, saving the images of the stacking
process is necessary to make the device design for the nanofabrication.
Since the graphene and the gates might not be visible once the stack is
finally dropped on a SiO2 chip, having pictures with the position of the
different flakes is essential to design the final device.

(j) Fan. A fan is added to cool down the stage faster. This can be useful
after dropping the stack for example, since the stage will be at 180 °C.

(k) Filters. Using filters can help detect defects in the flakes which are not
visible otherwise.

(l) White light source.

3.1.5 Stacking: Graphene cutting

The MATBG devices are always fabricated using a cut-and-stack technique[48],
where a single flake of graphene is cut in two pieces using an AFM can-
tilever. This approach induces less tension in the original graphene flake,
thus reducing the chance of relaxing the twist angle compared to the original
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Figure 3.8: Transfer stage from the front and side view. The letters
correspond to the different parts explained above.

tear-and-stack [21, 37]. The devices are always made starting from a single
graphene flake to ensure relative crystal orientation matching prior to the
layer rotation. Graphene is cut at room temperature in the transfer stage
by using a glass slide with an AFM cantilever mounted on a PDMS plat-
form. The set-up is very similar to the PC stamps: a small PDMS square is
placed on a glass slide and an AFM cantilever is placed on the edge of the
PDMS and secured with scotch tape (Fig. 3.10a). To cut the graphene, the
glass slide with the AFM cantilever is placed on the micromanipulator of the
transfer stage and lowered towards the chip with the desired graphene flake
until contact is made. The point of contact can be seen as the cantilever
deflects changing its reflectance. Once the cantilever is in contact with the
Si chip close to the desired graphene flake, the sample stage is moved over
the flake, which results in a clean-cut ca. 1 µm wide (Fig. 3.10b and c.).
The cut is performed at room temperature to avoid sudden relaxation of the
graphene flake, as at higher temperatures it tends to fold onto itself.

The AFM cantilever set-up can also be used to move flakes [119, 120]. This
is especially useful when a flake is very close to the desired flake, such that
it might negatively affect the pick-up process. By precisely controlling the
AFM cantilever with the micromanipulators, one can fully remove a flake
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Figure 3.9: Using the aperture diaphragm control of the microscope.
a, The aperture diaphragm is closed, allowing to focus on the graphene flake
and seeing clearly the AFM cantilever during cutting as described in 3.1.5. b,
The aperture diaphragm is open. The graphene flake is now barely visible.
c, Apparent clean hBN flake. d, Upon closing the aperture and changing the
colors and contrast of the came is possible to see defects in the hBN flake.
Scale bar is 10 µm in all figures.

from the area as shown in Fig. 3.10d - f. The example shows the removal
of an hBN flake, but the same process can be used for graphite flakes, and
even for other residues present in the chip surface, such as Si residues from
the dicing. This is useful to get a cleaner surface around the desired flakes,
which helps to ensure that the lamination (the process of fully covering a
flake with the stamp) over the flakes is done slowly in a controlled manner.
This avoids the appearance of bubbles, helps squeeze any present bubbles
out and lowers the chance of relaxing the twist angle.

3.1.6 Stacking process

After cutting the graphene and pre-selecting all the flakes, the stacking pro-
cess may begin. The entire pick-up process is done at a T ∼ 100 - 120
°C. The lamination on the flakes is done at constant T , approaching by
hand using the z-micromanipulator on the transfer stage. The high T used
throughout the process serves to improve self-cleaning by enhancing bubble
mobility in all the pick-up steps [115, 112]. The overarching theme is for
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Figure 3.10: AFM cantilever cutting and deterministic cleaning. a,
AFM cantilever on PDMS placed on a glass slide to be used in the transfer
stage. b, The AFM cantilever is used to cut the graphene in-situ in the transfer
stage. c, Zoom-in of the cut made in the flake in b. d, The AFM cantilever
is used to remove the thicker flake besides the flake of interest. e, The second
flake is being folded onto itself using the cantilever. f, The undesired flake is
completely removed from the area while the good flake remains in place. The
scale bar in a is 3 mm and 10 µm in the rest of the figures.

the stacking process to be as smooth as possible, which involves having full
control of the stamp wavefront and avoiding bubble formation. In the fol-
lowing the fabrication of a double gated MATBG device is explained, which
can be extended to more layers or to single gated devices following the same
recipe. A schematic and a real stacking process are shown in Fig. 3.11 and
Fig. 3.12, respectively. The steps are as follows:

1. Selecting a clean region of the PC/PDMS. In order to achieve the
cleanest 2D interfaces possible, we want to avoid bubbles from forming
during the stacking process as explained above. Typically, bubbles form
during the stacking process mainly because of dirt on the surfaces of the
different 2D materials [115, 112] or as a result of approaching too fast,
which can trap air along the interface [121]. If the stacking process is
done in an area of the PC film which already has some dust particles,
bubbles, etc. this could hinder the pick-up process and introduce bub-
bles into the whole stack. Therefore, the first step is to locate a clean
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region on the PC film which is larger than the largest flake to be used.
Once this is chosen, the top graphite gate is picked up.

2. Top graphite gate. The direction with which the PC is approached in
every step is important since it marks the relative orientation between
the flakes. The approach to pick up the graphite flake, as well as all
the consequent flakes, is as follows: The chip with the desired flake is
placed in the heated sample stage and kept stable by applying vacuum
on its back side. The stamp is lowered until contact is made with the
heated SiO2 surface. The point of contact is evident from the change
in the deeper apparent color of the contact area, which is surrounded
by Newton’s rings. (see Fig. 3.12a, d and g). In general, the tilt
angle of the stamp micromanipulator is set such that the stamps make
contact in a corner, which allows for a better control of the wavefront.
A sudden “jump” or fast movement of the PC film can tear, move or
induce bubbles in the heterostructure. Once the PC has fully laminated
over the flake, the stamp is pushed slightly further and then retracted
slowly. When the flake is picked up, the PDMS/PC film will acquire a
dark shadow in the shape of the flake, unlike the characteristic purple
color it has on the SiO2 surface.

3. Top hBN. The top hBN is generally chosen to have at least one sharp
edge. This facilitates to fully laminate over the 1st graphene flake while
avoiding any contact between the PC or the hBN with the 2nd graphene
flake. The top hBN should be larger than the top graphite, to prevent
the graphite and graphene layers from shorting.

4. First graphene. When picking up the graphene, the chip is arranged
such that the cut in the graphene is aligned to the sharp edge of the top
hBN (Fig. 3.12b). The wavefront is approached very slowly to avoid
any unintended movement of the graphene, as any movement of either
the top or bottom graphene sheet can cause a distortion in the twist
angle. Once the hBN is in contact with the graphene, the wavefront is
further moved until the entire first graphene sheet is covered with hBN,
while ensuring that the PC does not touch the second graphene. As
soon as the first graphene sheet is in full contact, the stamp is slowly
retracted and then moved a few mm above the Si chip. During this
pick-up step the graphene flake is “clamped” with the top hBN layer.
This means that an edge or a corner matches between the two flakes.
When the “clamping” is done correctly, part of the graphene flake edge
(∼ 1 µm) effectively folds over the edge of the hBN, which is visible
in the optical images (see Fig. 3.12b-d). This process effectively re-
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stricts the movement of the graphene sheets, preventing the twist-angle
relaxation thus significantly increasing the yield of the devices with the
desired twist-angle. Importantly, the “clamping” has to be done in non-
crystallographic axis of the graphene and/or hBN to avoid unintentional
alignment between the layers, which would induce an additional moiré
pattern and influence the electronic properties of the stack [51, 122].
Therefore the “clamping” is not done between perfectly straight edges
(which point to possible crystallographic axes) but rather asymmetric
edges of similar size. Using the cut edge of the first graphene is an ideal
“clamping” point because the rippled graphene provides more roughness.
Therefore, one strategy is to cut the graphene not just in two pieces,
but rather in three, giving a cut edge also for the second graphene layer,
as is done in Fig. 3.12b-d.

5. Second graphene. While the stamp and the top half of the stack is
hovering over the chip, the sample stage is rotated by 1.1 - 1.2°. As the
twisted graphene tends to relax towards θ = 0° when making contact,
the sample stage is rotated at a slightly higher angle than the desired
twist-angle. After rotating, the second layer of graphene is overlapped
with the first graphene layer and the pick-up procedure is repeated. The
second graphene is also “clamped” with the hBN.

6. Bottom hBN. The bottom hBN pick up has to be done in such a way
that it fully encapsulates all the previous flakes and that it will cover
the bottom graphite gate. This means it should be larger than all the
previous flakes.

7. Bottom graphite gate. The bottom graphite gate should be entirely
covered by hBN. If not entirely covered, it will have different adhesive
behaviors between the hBN-covered region and the polymer-covered re-
gion, consequently inducing tension or strain during the pick-up process
This tension can relax the twist angle, and/or even displace the position
of the graphite gate, destroying the whole stack. In double gated devices
this pick-up step is even more crucial since both of the gates need to be
perfectly aligned in order to have a working device.
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Figure 3.11: Diagram of the stacking process. The numbers follow the
order of the steps described above. The gray rectangle represents the Si/SiO2
substrate. The narrow elongated purple shapes are the graphite flakes, the
blue shapes are the hBN flakes and the thin purple shape represents graphene.
The semi-transparent feature represents the PDMS/PC stamps.
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Figure 3.12: Stacking process. a, Picking up the top hBN, top graphite
is already picked up. b, Aligning the top hBN with the 1st graphene flake.
c, 1st graphene is picked up. The change of color signals that the pick up
was successful. The red arrows point to the edge having “clamped” over the
hBN. d, Stamp is passed over the 2nd graphene after rotating the stage 1.1°.
Red arrows points to the places where the 2nd graphene “clamps” over the
1st graphene. e, Both graphene flakes are now picked up. f, Picking up the
bottom hBN. g, Aligning the stack over the bottom graphite gate. h, The
stack is dropped on a pre-patterned chip with markers. i, Clean stack after
removing the PC. The final stack had an angle of 1.08°.
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8. Dropping the stack. Finally, the complete stack is dropped in a pre-
patterned Si/SiO2 chip with alignment markers to facilitate the subse-
quent nanofabrication process. The chips are cleaned with O2 plasma to
improve the adhesion with the 2D layers. The contact between the PC
film and the chip is now made at T ∼ 120-150 °C to enhance bubble mo-
bility. The wavefront is moved very slowly over the stack to push away
all the remaining bubbles [112]. Once the full stack is in contact with the
Si, the wave front is moved ca. 200 µm further from the stack. Now the
T is raised slowly up to 180 °C. As the T approaches the glass transition
temperature Tg of the PC of ∼147 °C [112] the PC detaches from the
PDMS film and at T far beyond the glass transition ∼180 °C, the PC
completely melts. For our PC/PDMS stamps and transfer setup the de-
taching happens at T ≈130 °C. At this point the z-micromanipulator is
moved up slightly to detach the entire PC film from the PDMS. During
this process ( 130 °C < T < 180 °C), we make sure that the PDMS is not
in contact with the PC film by moving the stamp slightly up every time
the Newton’s rings reappear. Once the T ∼ 180 °C, the stamp is fully
retracted. At this point the PC in contact with the chip is melted and
it will detach from the remaining PC on the glass slide. The T ranges
in the step are very important. Retracting too far at a low T can break
the stack, while if the T is raised without detaching the PC from the
PDMS, the expansion of the latter can put pressure on the stack. Dur-
ing the entire process, the x-y micromanipulator of the stamp and the
sample stage should not be moved since this will may the stack. Once
the stack is dropped, the T of the stage is lowered to room temperature.
The stacking process is now finished.

9. Cleaning the PC. The final step prior to the lithography is to clean
the PC. The chip is left in chloroform for 2 min, followed by rinsing in
acetone for 1 min, isopropanol for 1 min, and blow dried with N2.

3.1.7 Lithography: etching and evaporation

In order to convert the heterostructures of van der Waals materials into
electronic devices, nanolitography techniques are used. We will use mainly
three techniques: electron beam lithography (EBL), reactive ion etching
(RIE) and metal evaporation (see Fig. 3.13), which are briefly explained
below. For further discussion the reader is referred to materials such as Ref.
[123].
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3.1.7.1 Electron beam lithography Lithography is the process used
in micro-/nano-fabrication to create structures in materials. In this process
the material to be used is covered with a photoactive polymer, called a resist,
whose properties change when exposed to light. After dissolving away the
exposed (unexposed) regions of a positive (negative) resist, the remaining
structure can now be used as a mask for the treatment of the underlying
material of interest. For example, if now a metal is evaporated into the
structure, the polymer can later be cleaned such that the metal only remains
on the previously exposed (for positive resist) or unexposed (for negative
resist) areas. This process is called lift-off (see Fig. 3.13).

One of the common techniques used for creating nano-scale structures (<1
µm) is electron beam lithography, in which a beam of electrons is used
instead of light to expose the resist. For electron beam lithography (EBL)
processes we use polymethyl methacrylate (PMMA), a positive resist.

To write the desired structure the dose of the EBL needs to be calibrated.
The dose is given in µC/m2, and is calculated taking into account the current
and the size of the electron beam. A parameter which is important for the
processes at hand is the concept of proximity effect. When writing the
structure with the EBL, the backscattered and secondary electrons will also
contribute to the final structure. While when writing structures of a large
enough size the effect is barely noticeable, there are two opposing cases when
it becomes important: exposing a large area leaving a structure inside that
area or writing a very small feature. In the former, the dose needs to be
reduced since the backscattering electrons will make the effective remaining
area smaller than it should. This will be important when writing the etching
mask, as explained below. Oppositely, when writing a very small feature,
the dose needs to be increased, as the backscattering electrons will barely
contribute and the area will be smaller than desired. This will be relevant
when etching the top gate to create the narrow junctions.

After exposure to an adequate dose of the electron beam, the sample is
developed, a process in which the exposed polymer is dissolved. After de-
veloping, the structure is clearly defined and the next fabrication step can
be done. The used PMMA is developed using a solution 1:3 of MIBK:IPA
(Methyl isobutyl ketone and Isopropanol, respectively).

3.1.7.2 Reactive ion etching In order to shape the stacks into the final
shape reactive ion etching (RIE) is used. In this technique the material is
both chemically and physically etched. The material is inserted into a vac-
uum chamber and the chamber is filled with certain gases which chemically
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react with the material to be etched upon being ionized. An RF voltage is
applied to the wafer plate (where the sample is sitting), which ionizes the
gas and creates a plasma. In each cycle of the RF oscillation the electrons
are moved up and down the chamber. Due to the different weight of the
electrons and the ions, eventually a voltage difference is created between the
plasma (positively charged) and the wafer (which gets negatively charged
by the crashing electrons). This voltage difference will direct the plasma
towards the sample, obtaining the desired etched structure.

3.1.7.3 Evaporation Metal evaporation can be done in two different
ways: thermal evaporation and electron-beam evaporation. In both cases the
material is heated up until it sublimates and the sublimated metal is slowly
deposited on the surface of the sample. Whether a material is evaporated
with thermal or e-beam evaporation depends on its properties, mainly its
melting point. Some materials can be evaporated with both techniques. For
the devices used in this thesis the electrical contacts always consist of a
combination of chromium and gold. Chromium is evaporated via e-beam
evaporation and gold using thermal evaporation.

3.1.7.4 MATBG fabrication process The typical MATBG devices
consist of 2 lithography steps: etching the stack into a Hall bar structure
and evaporation of the contacts. In order to create the Josephson junction
architecture two more steps are needed: evaporation of the top gates and top
graphite gate etching to define the weak link between the superconductors.
All the steps are shown in Fig. 3.14 and are described next:

1. Top gate evaporation. The contacts are usually ∼300 - 500 nm wide
and consist of 5 nm of Cr and 50 nm of Au. Chromium is used as
an adhesion layer to the SiO2 and because of its low contact resistance
to graphene/graphite, compared to other metals as Ti for example [21].
After the evaporation process the samples are immersed in acetone at 50
°C for a few hours to remove the PMMA and lift-off the undesired metal.
Once most of the metal has been lifted, a syringe is used inside the
acetone to add extra force which aids the remaining pieces of undesired
Au which might still be connected to the sample to break. Finally, the
sample is rinsed in IPA and blow-dried with N2.

2. Hall bar etching. The hBN/graphene heterostructures are etched
using fluorine gases. We use 40 sccm CHF3 / 4 sccm O2 [21] at 30
W, which gives an hBN etching rate of ca. 20 nm/min. In this step
the sample is etched all the way down to the SiO2, leaving only the
heterostructure in the shape of the final Hall bar. The Hall bars are
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usually defined to be 2-3 µm width with 1-2 µm distance between the
contacts. The Hall bar “arms” are usually 1 µm wide. For this process
the EBL dose needs to be lower than for the contact writing. If the dose
is not calibrated properly, the “arms” become overexposed due to the
large exposed area and the final structure will be smaller than desired,
which can be detrimental for the contact deposition.

3. 1-D electrical contact to graphene. In order to get the best con-
tact possible we use the 1D contact technique [21]. This combines an
step of RIE followed by metal evaporation, such that the evaporated
metal contacts the freshly exposed graphene. By having a specific ratio
of hBN/graphene etching rates, a tilted structure is obtained, ensuring
the 1D contact to the graphene. Specifically, an etching rate ratio be-
tween hBN/graphene of ∼3:1 gives the best results. Then graphene is
contacted by depositing 5 nm of Cr and 50 nm of Au. After the evapo-
ration the samples are immersed in acetone at 50 °C for a few hours for
the lift off process, as in the top gates case.

4. Etching the top gate graphite. Graphite is etched using 50 sccm
O2 plasma at relatively high power (100 W) for a very short time (3-5
seconds) to avoid widening of the features [124]. We have found that
this recipe gives a very sharp and clean vertical profile to the etched
channel, as previously reported [125]. The obtained channels are ∼ 100
nm long. After etching the samples are put in hot acetone for a few
hours. After several hours the samples are moved into a new beaker
with fresh acetone and left overnight. Finally, the sample is cleaned in
IPA and then blow-dried with N2. The long acetone cleaning is used to
minimize the residues of PMMA left in the etched channel. Opposite to
the etching mask, in this case a higher dose in the EBL is used.

3.2 Transport measurements

The main probe used in this thesis for the characterization of the MATBG
devices is electrical transport. The idea is simple: current is sent to two
contacts of the device and the voltage drop is measured. This voltage mea-
surement is then converted to electrical resistance by dividing the signal by
the current. The properties of the material can be mapped by performing
these simple resistance measurements changing other external parameters,
mainly: current, gate voltage, temperature and magnetic field. From the re-
sults of the different measurements one indirectly access the band dispersion,
the electronic properties and possible phase transitions in the material.
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Figure 3.13: Diagram of the nanolithography steps. a Top gate evapo-
ration. b, Etching the stack into a Hall bar c, Evaporation of 1D contacts. d,
Etching the top graphite gate. The schematics show the cross section following
the axis direction shown in the bottom left of each figure, which refers to the
reference frame displayed in Fig. 3.14d.

3.2.1 Low-frequency lock-in techniques

The measurement scheme used in this thesis is what is generally known
as the standard low frequency lock-in techniques. The measurements are
done exciting the sample with an AC current at a low frequency (below 100
Hz). The response is then measured with a lock-in amplifier which improves
the signal to noise ratio by using phase-sensitive detection [126, 127]. The
excitation signal is sent at a fixed frequency and the measured response is
locked at that frequency by multiplying the input signal with a reference
signal at that given frequency and passing it through a series of low-pass
filters. This process, called demodulation or phase-sensitive detection, is
used to isolate the signal at that given frequency, allowing the measurement
of small signals with reduced noise. In the lock-in amplifiers typically used
in this thesis (Stanford Research SR860 (or SR830) Amplifiers), the input
signal is multiplied by the reference signal plus a copy of it phase shifted
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Figure 3.14: Optical images of the different nanolithography steps.
a, First the top gates are evaporated. b, The stack is then shaped into a
Hall bar structure by reactive ion etching. c, The 1D contacts are made. d,
Finally the top gate is etched to create the junction. The green color comes
from the PMMA used in the lithography. The dark line is the etched region.
The picture is shown with PMMA, to highlight the position and shape of the
etched region, which is otherwise not visible. The reference frame marks the
direction from which the cross sections shown in Fig. 3.13 are taken.

by 90°, making a dual-phase demodulation. The output signal has then
two channels: X and Y , corresponding to the in-phase and out-of-phase
response. The total amplitude R and the phase θ are then obtained as:

R =
√
X2 + Y 2

θ =arctan(Y/X)
(3.1)

3.2.2 Cryostats and filtering

To measure the exotic properties of MATBG the material needs to be cooled
down to cryogenic temperatures. The energy scale of the effects one can mea-
sure is limited by the thermal noise ∝ kBT , which is on the order of 25 meV
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at room temperature (T ≈ 300 K). Both the band width of the flatbands of
MATBG and the energy gaps separating it from the dispersive bands, are
on the order of tens of meV. That implies that to access the isolated flat
bands the material needs to be cooled down enough such that thermally ex-
cited transitions from the flatbands to the dispersive bands are suppressed.
Furthermore the states inside of the flatband have smaller energy scales,
which can go down to the order of ∼ 1 meV. The lower the T the sharper
the states will become, since the thermal noise is reduced and spontaneous
transitions between states, which average out the signals, are further sup-
pressed. Finally, some of the correlated states we are looking for have a
very low transition T , for example, the superconductivity is suppressed for
T > 1 K or lower depending on the device. Therefore, performing the mea-
surements at the lowest possible T will result in the best quality data which
reflects the nature of the ground state of the system, ultimately leading to
a better understanding of the phenomena.

Cryostats can be classified as “wet” or “dry”, depending whether they use
liquid cryogens (like He) or not. In our case, the fridges are dry, using
compressed He to cool down. We will distinguish between two types of dry
fridges: variable temperature instrument (VTI) and dilution fridge. In both
cases the T down to 4 K is achieved in the same manner, a cold head is
used to pump He through a circulation line, in which the system can cool
down without liquefying the He by reducing the He pressure. In order to
isolate the coldest part from the room temperature ambient, the fridge have
stages at different T , separated from each other by radiation shields. In the
VTI these stages are 50 K and 4 K, while in the dilution fridge they are 50
K, 4 K and 1 K. The main difference between the two fridges is the way
they achieve their lowest T and, of course, the value of this lowest T , as is
explained below.

3.2.2.1 Variable Temperature Insert (VTI) In this type of system
the sample is introduced with a loading stick inside a chamber filled with
He gas. This chamber is then surrounded by a second chamber through
which He is flushed, by pumping it from one end to the other. The sample
sits at the bottom of the first cavity, just above where the second cavity
has a needle valve, which will control the flow of pumped He. By using a
cold head the system can cool down to 4 K without using liquid He. Then,
by reducing the pressure of He down to few mbar, the T can be further
lowered down to 1.4 K (see Fig. 3.15a). The minimum T is achieved by
ensuring that the pumping and the needle valve value maximizes the ratio
between the liquid phase that forms at the bottom of the needle valve and
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the evaporation of it caused by cooling down the sample stage. If too much
or too little flow comes in, the thermal exchange is reduced and the minimal
T is not achieved.

3.2.2.2 Dilution fridge A dilution refrigerator is used to achieve T in
the mK range. In our case the base T of the fridge is ca. 35 mK. These
extremely low T are achieved by having a phase mixing of He-3 and He-4.
The dilution refrigerator takes advantage of the phase separation that occurs
between He-3 and He-4 at very low T . The phase separation arises because
He-4 obeys bosonic statistics, while He-3 follows fermionic statistics (unless
cooled down to much lower T ). As the system is cooled down and the two
isotopes are together, below a T ≈ 0.8 K, the two isotopes will separate
creating a He-3 rich phase and a mixed phase (see Fig. 3.15b). Since He-3
is lighter, the separation also occurs in space, leaving the He-3 rich phase on
top and the dilute phase on the bottom. When cooling further the allowed
concentration of the mix changes continuously, reducing the concentration
of He-4, until a minimum point of 6.4 %. If once the mix is made, one
can selectively remove the He-3 isotope, the He-4 will be forced to create
more dilute phase. This is the key parameter, since the cooling power of
the dilution fridge is then given by the enthalpy difference of the He-3 in its
diluted or pure phase, multiplied by the flow.

The separation of the phases can be achieved by having two chambers, the
mixing chamber and the still chamber, which take advantage of the spatial
separation of the two phases to selectively remove He-3 atoms. This is
shown in Fig. 3.15c. A pump is used to circulate the gases between the two
chambers, which are built in such a way that in the mixing chamber only
the He-4 can escape and in the still chamber only the He-3 can escape. In
the mixing chamber this is achieved simply by geometry while in the still
plate a heater is used to have a T in which the vapor pressure of He-3>He-
4, ensuring that He-3 remains on top. By controlling the flow, the phase
boundary is controlled which gives the optimal cooling power of the fridge,
to achieve the lowest possible T .

3.2.2.3 Filtering: cooling down the electrons The last important
component to measure electronic properties at very low T is to also cool
down the electrons taking part in the electrical measurements. If this is not
done, the T of the measurement will not be the T of the fridge, but rather a
much higher T induced by the incoming hot electrons. The cooling is done,
firstly, by physically thermally anchoring the wires to the different stages of
the fridge (50 K, 4K, 1 K) and, secondly, by filtering. Since the measure-
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Figure 3.15: Working principle of a dilution refrigerator. a, Behavior
of He-3 and He-4 with vapor pressure and T . b, Phase separation between He-
3 and He-4. c, Working principle of the mixing chamber shown as a diagram
(on the left) and on a real device (on the right). Figure modified from [128].

ments are performed at very low frequencies, filtering higher frequencies will
effectively cool down the electrons without affecting the measured signal.
The electronic T is related to the frequency ν by hν = kBT , such that to
cool down to 35 mK the frequency needs to be cut off at ca. 730 MHz. The
necessary attenuation (A) to cool down to a certain T can be calculated
using the following formula [129]:

A(ν) =
e

hν
kBT − 1

e
hν

kBTc − 1
, (3.2)

where Tc is the objective temperature and T is the temperature of the hot
reservoir. By using this equation one can calculate which kind of filtering is
needed to obtain the desired electronic T for the experiment. In general a
combination of low-pass RC and LC filters is used for this purpose. In our
dilution fridge, commercially available filters from QDevil are used. Having
a 65 MHz RC filter at the 1 K stage and a 225 MHz LC filter at the mixing
chamber.

3.2.3 MATBG measurement protocol

A final note is added here to explain the protocol followed to measure the
MATBG devices. Due to the fragile nature of the fabrication, the aimed
angle during the stacking does not always correspond to the obtained angle.
Therefore the devices are screened in order to only cool down and measure
in detail the ones which are promising. The protocol consists of three parts:
room T measurements, angle extraction at low T and actual measurements.
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3.2 Transport measurements

3.2.3.1 Room T measurements: vacuum probe station After the
fabrication of the devices, the 4-terminal resistance (Rxx) as a function of
back gate voltage Vg is measured at room T to distinguish close-to-magic-
angle devices before loading in a cryostat. There are two main features
which distinguish potentially good devices from devices which have relaxed
to Bernal bilayer graphene (BBG) or to a low twist angle (θ < 0.7°), as shown
in Fig. 3.16: the shape of the Rxx vs. Vg dependence and the nominal value
of the Rxx. Typical BBG devices have a very sharp decay after charge
neutrality point (CNP), while twisted devices have a flatter dome due to the
presence of band insulators. The band insulators in the electron and hole
sides tend to have different resistance values, which results in a tilted dome-
shaped curve at room-temperature, i.e. Rxx(Vg < 0) < Rxx(Vg > 0) as in
Fig. 3.16a. However, the thickness of the hBN needs to be known to properly
compare the behavior. A MATBG device with a thin hBN might look like a
BBG device at high enough voltages, while a BBG device with a thick hBN
might look like a MATBG device if not enough voltage is applied. Finally,
MATBG devices have a higher Rxx than BBG or low angle devices due to
the flat band. A Rxx > 10 kΩ, combined with the previous measurement
indicate towards a potentially good device. However, devices with a large
twist angle (1.3° < θ < 1.8°) or with inhomogeneities are indistinguishable
from good devices at room T . This means that there will always be some
devices with undesired twist angles which end up being cooled down for
measurements.

3.2.3.2 Angle extraction The twist angle is one of the most distinct
features of a magic-angle graphene device. The angle is extracted by the
relation between the superlattice carrier density ns and the twist angle θ
which was shown in eq. 2.20:

ns = 4/A ≈ 8θ2√
3a2

(3.3)

where A is the area of one moiré cell and a is the graphene lattice constant.
The first step is to extract the gate capacitance Cg, to convert the back gate

Vg data to carrier density, using n = Cg

e
Vg. Then an accurate definition of

ns in the data has to be given.

The capacitance is obtained by doing magnetotransport measurements. It
can be obtained by two different methods: either using Rxx or Rxy data
(shown in Fig. 3.17):

� Landau level quantization. When subjecting a 2D sample to a
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Figure 3.16: Screening the TBG devices at room T . a, Room T
measurement comparing a Bernal bilayer graphene (BBG) and a magic-angle
twisted bilayer graphene (MATBG) device with twist angle θ = 1.04 ± 0.02°
shown in the blue and red curves, respectively. The asymmetry of the dome,
combined with the 4-terminal resistance (Rxx) value allows to distinguish be-
tween the two. hBN of comparable thicknesses (d ≈ 15 nm) are used in both
devices. b, Cool down curves of the MATBG shown in a from T = 230 K
down to T = 2 K. The curves are shifted by 1 kΩ starting from the lowest T
for clarity.

magnetic field, the electrons form quantized cyclotron orbitals (Landau
quantization), which gives rise to the appearance of so-called Landau
levels [130]. The density of states in the Landau levels is given by
nLL = νeB/h, where ν is the degeneracy of the levels, which is material
dependent. In the case of graphene there is a 4-fold degeneracy, due
to the spin and valley flavors [6]. In MATBG the degeneracy should in
principle be doubled at CNP, showing a series of Landau levels as ±4,
±12 ±20.... However the measurements show a 4-fold degeneracy with
the sequence: ±4, ±8, ±12...[122]. The degeneracy also changes when
filling the flat band, as there are band-resets at certain integer fillings
[131, 47, 46]. This leads for example to a two-fold degeneracy after
half-filling. As the density of states in a Landau level is constant with
increasing field, one can use the slope of the Landau level ∆B/∆Vg to
obtain the capacitance of the sample:

∆n = ∆Vg
Cg

e
=
e

h
ν∆B

Cg =
∆B

∆Vg

e2

h
ν

(3.4)
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3.2 Transport measurements

� Hall effect. Another way to calibrate the carrier density is to use the
Hall effect at low fields (B < 1 T) [44]. Close to the CNP, the Hall
carrier density nH = −B/(eRxy) ≈ n, such that the slope ∆nH

∆n
= 1 or

∆nH

∆Vg
= e

Cg
. In order to calculate nH , Rxy is antisymmetrized to avoid

artifacts arising from Rxx-Rxy signal mixing due to geometric effects.

After obtaining the capacitance, the position of ns needs to be determined.
Since the dispersive bands in MATBG also develop Landau levels, the po-
sition of ns can be obtained as the origin of the Landau levels emerging
from the band insulator position. However, for some devices these Landau
levels can be weak or the BIs can be broad, not allowing the Landau levels
to be clearly seen. Another way to find this position is to use the position
of an integer filling of the flat band and multiply it by the proper constant
to obtain ns. For example, one can extract n1/2 from the position of the
Landau levels of the ν = 2 CI, and obtain ns = 2n1/2. Finally the angle
is obtained using the expression of eq. 3.3. Since the Landau quantization
only appears at low T , these measurements are performed either in the VTI
or the dilution fridge.

In summary, the complete protocol to screen MATBG devices from the stack-
ing to the measurements to ensure only close to magic-angle and homoge-
neous devices are measured would be as follows:

� Stacking. Only stack with pristine initial flakes and ensure the stack-
ing process is “clean”: no jumps, folds, etc.

� Nanofabrication. Once the stack is finished, only fabricate the device
in a bubble free area (which can be confirmed with an AFM image).
Carefully design the device to optimize the number of contacts and
top gates.

� Room-T screening. Load the device in a vacuum probe station and
check the shape of the gating dome and the resistance.

� Initial characterization. Load the device in a cryostat (ideally a
fast cooling one, a VTI in our case), measure Rxx vs. Vg and extract
the twist angle. If the device is close to magic-angle, measuring Rxx

vs. Vg vs. T can already indicate if the sample might become SC,
depending on the T of the fridge being used. In our case, this step
is used to decide in between which pairs of electrodes to perform the
graphite etching to create a junction.

� Final measurements. Load the device in a dilution fridge and do
the final measurements.
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Figure 3.17: Twist angle extraction methods. a, Longitudinal resistance
Rxx vs. back gate voltage Vg vs. perpendicular magnetic field B. By fitting
the Landau levels one can extract the gate capacitance, used to calculate n and
the twist angle. b, Calculated Hall density nH vs. Vg. In the region around
charge neutrality n = nH . The measurement is taken at B = 500 mT.
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In this section the optimization of the gate-defined Josephson junctions fab-
rication is explained, highlighting the importance of certain parameters. The
optimization process is mostly reflected in considerations about the stacking
process as well as some design improvements for the nanofabrication. These
include optimizing the designs to have as many gates a possible to increase
the chances of having a superconducting region in the MATBG device and
being able to have more than one junction per device and the optimization of
the top graphite gate etching. The section is divided in three parts: electro-
static simulations, the optimization of stacking and fabrication of the dual
gated devices and the graphite etching recipe calibration and optimization.

4.1 Electrostatic simulations

In order to gain insight on how the electrostatics of the dual gated archi-
tecture of our device works (see Fig. 1.5), we have performed electrostatic
simulations by solving the Poisson equation with a finite difference method
(FDM) [132]. The Poisson equation can only be solved analytically for very
simple models, in order to solve a real geometry one needs to use numer-
ical methods. A typical way to solve this is by using the FDM, in which
the equations are discretized, converting the problem into a system of linear
equations, such that one can solve it via matrix inversion. The approach is
done following the work of [133].

The generalized Poisson equation is given by:

∇ · [ϵ(r)∇V (r)] = ρ(r)/ϵ0, (4.1)

where ϵ is the dielectric constant (ϵ ≈ 4 for hBN), V is the electrostatic po-
tential, ρ is the density of electric charges and ϵ0 is the vacuum permittivity.

To numerically solve the equation, the system to be studied (double gated
MATBG encapsulated in hBN) is first discretized in the form of a 2-dimensional
grid, such that x = ih and y = jh, with h the distance between the points
and i and j the discretized values of x and y (see Fig. 4.1a). The total
size is given by Nx and Ny. Each of the points in the grid is assigned a
potential value given by V (i, j). When solving the equation we assume that
the potential at each point is dependent on the potential of the 4 adjacent
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points plus its initial charge ρ, such that:

V (i, j) =1/4[V (i− 1, j) + V (i+ 1, j) + V (i, j − 1)

+ V (i, j + 1) + ρ(i, j)h2/ϵ0].
(4.2)

The discretized problem is then converted into a matrix and can be solved
by matrix inversion. However, only very small dimensions can be solved by
inverting the matrix, while large systems need to be solved by an iteratively:
an initial guess for V is given and the problem is solved iteratively until con-
vergence is achieved by having the difference between two iterations smaller
than a given threshold:

error = V k+1(i, j)− V k(i, j) < threshold, (4.3)

where k is the iteration number. In this case we use a successive over-
relaxation method due to its high computational performance [134]. The
successive over-relaxation method works as a Gauss-Seidel approach in which
a weight is given to accelerate the convergence. An initial guess of V 0(i, j) =
0 is given and the problem is solved iterating the residuals Rk(i, j) instead
of the potentials:

For k = 1 → Rk(i, j) = 1/4[V k(i− 1, j) + V k(i+ 1, j)

+ V k(i, j − 1) + V k(i, j + 1) + ρ(i, j)h2/ϵ].
(4.4)

The potential for the next iteration is calculated by:

V k+1 = V k(i, j) + wRk(i, j), (4.5)

with 0 < w < 2, where w is the chosen weight. From the next iteration, the
process is accelerated by adding the newly guessed solution:

For k ≥ 2 → Rk(i, j) =1/4[V k+1(i− 1, j) + V k(i+ 1, j)

+ V k(i, j − 1) + V k(i, j + 1) + ρ(i, j)h2/ϵ0],
(4.6)

until the problem converges such that the error is smaller than the defined
threshold, as shown in eq. 4.3. For a rectangular mesh the weight is calcu-
lated as:

w =
9−

√
64− 16t2

t2
, with t = cos

π

Nx

+ sin
π

Ny

. (4.7)
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4.1 Electrostatic simulations

Once the potentials are known one can calculate the discrete electric fields:

Ex(i, j) = −V (i+ 1, j)− V (i− 1, j)

h

Ey(i, j) = −V (i, j + 1)− V (i, j − 1)

h
,

(4.8)

Since the fields are calculated as a difference, the result is a staggered matrix
with the fields being at different places than they should (see Fig. 4.1b).
This has to be corrected for to obtain the right mesh:

E ′x(i, j) = 0.5[Exi, j + 1 + Ex(i, j)]

E ′y(i, j) = 0.5[Ey(i+ 1, j) + Ey(i, j)]

Etotal =
√

(E ′2x + E ′2y ).

(4.9)

All the ingredients to solve a discretized Poisson equation have now been
defined. However, to solve the real problem at hand, we need to add the
dielectric constant of the different materials, mainly air and hBN. The di-
electric constants of the different materials are added as a staggered matrix
relative to the original one such that ϵ(i, j) = ϵ(xi + h/2, yj + h/2) as shown
in Fig. 4.1b. Defining it this way allows to calculate potentials at the bound-
ary of different materials with different dielectric constants. With the newly
defined ϵ matrix we have to recalculate the residuals in order to calculate
the potentials. In this case, the process to obtain the final equation is more
complicated and the derivation is not included here (see [134] or [133] for
reference). The final solution for the potentials and residuals are given as:

V (i, j) =
1

a0
[a1V (i+ 1, j) + a2V (i, j + 1)

+ a3(i− 1, j) + a4(i, j − 1) +
Q(i, j)

ϵ0
]− V (i, j)

R(i, j) =
1

a0
[a1V (i+ 1, j) + a2V (i, j + 1)

+ a3(i− 1, j) + a4(i, j − 1) +
Q(i, j)

ϵ0
]− V (i, j),

(4.10)

where Q(i, j) is the charge at a given position and a0, a1, a2, a3 and a4 as
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defined as:

a0 = ϵ(i, j) + ϵ(i− 1, j) + ϵ(i, j − 1) + ϵ(i− 1, j − 1)

a1 = 1/2[ϵ(i, j) + ϵ(i, j − 1)]

a2 = 1/2[ϵ(i− 1, j) + ϵ(i, j)]

a3 = 1/2[ϵ(i− 1, j − 1) + ϵ(i− 1, j)]

a4 = 1/2[ϵ(i, j − 1) + ϵ(i− 1, j − 1)].

(4.11)

The problem can now be solved as before using eq. 4.5.

Since the problem needs to be finite in order to be solved, boundary condi-
tions (BCs) have to be added to the system. The BCs are generally either
Dirichlet or Neumann like. Dirichlet BCs give a certain value at the bound-
ary f , defining a clear contour in which the value of the potential is set, such
that:

V (r) = f(r) for r ∈ ΩC , (4.12)

where ΩC defines the contour at which the BCs are given. On the other
hand, Neumann BCs are defined as a derivative, such that the value of the
potential has a given decay, i.e.:

δV (r)

δn
= f ′(r) for r ∈ ΩC , (4.13)

where n is the vector normal to the surface and f ′ is the value of the known
derivative.

4.1.1 Defining the problem

The region of interest of our simulations is the area around the junction,
which consists of a back gate defined by a metal electrode, two hBN sections,
the twisted bilayer graphene and two top gates separated by a narrow gap.
The simulations are used to understand how the junction will behave and
to optimize it in terms of hBN thickness and the width between the top
gates. Since we are just interested in the shape of the potential at the
MATBG position, we do not define the graphene explicitly. A more complex
simulation including the graphene chemical potential could be done, but it
lies beyond the scope of what is done in this work. For an example including
the graphene chemical potential one can refer to the supplementary material
in Rodan-Legrain et al. [135]. The simulations are used to find out the best
architecture based on the following parameters:

� Top and bottom hBN thickness ratio. As the structures are made

64



4.1 Electrostatic simulations

Figure 4.1: Discretizing the Poisson equation. a, The coordinates as
written as discretized into a grid in x and y. b, Grid showing the potentials
V in the same lattice as the initial positions while the electric field E (blue
crosses) and the dielectric constant ϵ (red crosses) are defined as staggered
lattices.

by stacking the materials, if the thickness ratio limits the efficiency
of the junctions the whole device could be compromised if the hBN
thicknesses are selected incorrectly.

� Size of the junction. In order to have a working JJ the size of
the junction dJ needs to be of the same order of magnitude of the
coherence length of the SC [58] of ca. 100 nm. Since the junction is
gate-defined, the shape of the potential will matter, giving a real size
which is not the same as the defined size.

� Global hBN thickness. We want to study whether having different
total hBN thicknesses changes the shape of the potential.

We first define a constant spacing between the top gates, i.e. 100 nm, and
do simulations having a constant bottom hBN and varying the thickness
of the top hBN. Then we fix the hBN ratio and change the size of the
gap between the gates. Since the resulting potential is dependent on both
the hBN thickness and the size of the gap due to the shape of the stray
fields [136], simulations are done changing both parameters. Finally, these
two variables are kept constant and we change the overall thickness of the
hBN. Apart from these two dimensions the rest of the parameters are always
defined similarly. The electrodes are defined with Dirichlet BCs: V (z = ztop)
= VTG and V (z = zbottom) = VBG. The sides and top regions with no gate
are set with Neumann BCs, satisfying δVx = 0 and δVy = 0, respectively.
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The value of the potentials of the different gates is set as VTG ̸= VBG to
define junctions at different carrier density n.

4.1.2 Finding the right hBN thickness ratio

A junction with a separation of 100 nm is defined in the top gate and the
structure is defined to have a constant bottom hBN thickness of thBN,bot = 14
nm (as this is generally used for the stacking). The thickness of the top hBN
is varied between thBN,top =7 ,14 and 21 nm. The voltage of the back gate
is set to VBG = 1 V and VTG = −1.5 V multiplied by the ratio of the hBN
thickness to correct for the different gating strength: VTG = −1.5× ttop/tbot
V. The electric potential and fields are calculated and plotted in Fig. 4.2a
and b, respectively, for a configuration of ttop = tbot. The results for the
potential at the MATBG position are shown in Fig. 4.2c. The results show
how the thinner hBN gives a potential with a sharper boundary, but with
smaller contrast, i.e. the difference between the global area and the junction
is smaller. This can be understood because for thinner top hBN, stray fields
play a smaller role, thus defining a sharper junction, but, at the same time,
the effect of the bottom gate is reduced as the graphene sits closer to the
top edge and top gates.

4.1.3 Effect of the top gate gap

Now we analyze how the separation between the top gates d can be optimized
to have the best gating in the junction by first setting a constant hBN
thickness and changing d the size of the junction and then changing both
variables together. We simulate the same hBN ratios as before, but having
a gap of 200 nm between the top gates. Fig. 4.2d show how the larger
d gets, the junction is better defined for different thBN,top (keeping thBN,bot

constant).

4.1.4 Effect of the global hBN thickness

Finally we check the effect of the global hBN thickness by varying the thick-
ness of the bottom hBN and performing again the previous comparisons.
This is to study the effect of the overall hBN thickness on the shape of the
electrostatic potential. We observe the junctions are much better defined
independently of the hBN ratios when using thinner hBN (see Fig. 4.3).

From the simulations we conclude that to enhance the quality of the junc-
tions we want to choose sufficiently thin hBN layers and make the junctions
as wide as possible. The junction size will be limited by the superconducting
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4.1 Electrostatic simulations

Figure 4.2: Electrostatic simulations of different hBN thickness ratio.
a, An example of the solved potentials around the area of the junction. The
bottom electrode (in red) is set to V = 1 V and set to V = −1.5 V. The
dashed purple line corresponds to the position of the MATBG. b, The electric
fields profile of the same simulation. The arrowed lines are the field lines. c,
Comparing the definition of the junction for different top hBN thicknesses.
The VBG = 1 V for all, while VTG = −1.5 × ttop/tbot V. d, Comparing the
definition of the junction for a larger junction size. The rest of the parameters
are the same as in c.

coherence length of ξ ≈ 50− 100 nm, such that we will aim for junctions of
ca. 100 nm, to ensure that the central part is proximitized. On the other
hand we will aim to have the top and bottom hBN to have around the same
thickness or the top hBN slightly thicker to improve the junction resolution.
As is explained in Ch. 5, the final real junction size will depend on each
device due to the gating profile. The actual junction will be defined by the
carrier density of the MATBG which is SC or not.
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Figure 4.3: Electrostatic simulations at different global hBN thick-
ness. a-b, Comparing the definition of the junction for thinner and thicker
general hBN layers, respectively.

.

4.2 Optimization of the dual-gated device

Due to the nature of the stacking process, the way the materials are stacked
influences the types of devices that can be made during the lithography
process. In the methods section, some general considerations of the stacking
process have been discussed. In this section key considerations specific to
the dual-gated devices are explained. Some of the ideas were optimized from
the beginning while others were realized iteratively with feedback from the
fabrication of the devices. A section discussing the evolution from the initial
designs to the final designs will point out exactly the limitations of the initial
designs.

4.2.1 Top gate - Back gate widths

As pointed out in the previous chapter, the size of the graphite gates will
never be exactly the same, which implies one has to consider both the relative
length and the width of the gates. The width is specially important in the
case of MATBG due to the existence of highly resistive states (BIs and CIs)
in the phase space. A double gated device (in the shape of a Hall bar) can be
divided into three distinct regions depending on how they are gated: gated
by both gates, gated by the wider gate and gated by the Si gate (see Fig.
4.4). The area where the device is defined will be gated by both the graphite
gates. The area gated only with the Si gate is the area where the contacts
are made and it generally only plays a role to decrease the contact resistance
at high magnetic fields. Finally, the area gated only by one graphite gate
can become very critical. The resistive states (mainly the BI but also some
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CI) can be quite insulating (∼MΩ), such that the current on the device can
drop close to zero as the input impedance approaches the output impedance
(i.e. a series load resistor used to define an effective output impedance of
a lockin amplifier). This means that even when the singly gated region is
small in area it can completely alter the measurements.

This is observed for example, when performing back gate vs. top gate re-
sistance maps (see Fig. 4.4c). The figure shows two very distinct features,
some that depend on both gates (diagonal features) and some that depend
only on the top gate (vertical features). The vertical features come only
from the region where the two gates do not overlap. It is clear that the sys-
tem becomes so insulating at CNP and at the BIs positions, that no signal
is recorded in those regions. Now is the interesting part: if the insulating
signal comes from the top gates, the Si gate can be used to gate it into a less
resistive states, allowing to measure the regions of interest. If the insulating
states arise from the back gate, nothing can be done, as the electric field
from the Si gate will be screened by the back gate (as illustrated in Fig.
4.4a and b). Therefore if the top gates are wider than the back gate, the
signal from the arms can be gated away in order to obtain proper data.

4.2.2 Top hBN size relative to graphene

It has already been explained how the hBN flakes always need to extend
beyond the gates and the graphene to avoid electrical contact between them.
However, in that architecture, it is possible to have the graphene be the same
size as the top hBN, being completely “clamped” by it. This is not possible
when having a top gate. The top gate needs to be electrically connected
with evaporated electrodes. These electrodes will go over the top hBN and
if the graphene sticks out, this will short the graphene to the top graphite
gate. Therefore, it is essential that at least one side of the hBN is free of any
graphene. This becomes more important in the case of creating junctions,
since at least two contacts are needed.

The approach we employed in this thesis was to optimize the devices by
creating as many junctions as possible, i.e. one junction per set of contacts.
When adding gate contacts along the whole device (as in Fig. 4.4), one
needs to consider they cannot cross the actual device contacts, thus limiting
the geometry of the device. The best way to solve the issue is to stack
in such a way that the graphene is “clamped” at the top edge while all
the other sides are fully covered by hBN. This way the gate contacts can be
done alternatively on each side of the device without shorting the gate to the
graphene, making the designing and fabrication easier. An example of this is
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Figure 4.4: Effect of the width ratio between top and bottom gates.
VSiG, VBG and VTG represent the regions gated by the silicon gate, the back
gate or the top gate, respectively. a, Back gate is wider than top gate. There
is a region where the back gate will screen the Si gate, creating extra features
which cannot be removed. b, Top gate is wider than back gate. The extra
region could now be removed by using the Si gate. c, An example measurement
in the case of the back gate being wider than the top gate.

shown in Fig.4.5 which compares the dropped stack and the final fabricated
device for a case with gates on both sides (in b) or just one side (in d). An
issue in the latter case was that due to the high density of top gates on one
side, some contacts needed to be sacrificed, having all the contact pairs on
only one side of the device, and thus loosing some Rxy signals.

4.3 Optimizing the graphite etching

The final step in the fabrication of the MATBG gate-defined junctions is to
etch a narrow channel in the top graphite gate which effectively creates the
junction. As we have seen in the electrostatics simulation, the shape of the
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Figure 4.5: Top hBN vs. graphene sizes and encapsulation. a-b,
The top hBN fully encapsulates the graphene except for a “clamp” on one
corner (marked by a red arrow), which allows to deposit top gates from many
different orientations without making shorts. c-d The edges of the graphene
are “clamped” on a whole side of the hBN. This allows to deposit top gates
only from one side, limiting the fabrication, since less contacts can be made.

defining potential is key to obtain a clean junction. That is also why graphite
was chosen as the top gate, since it can improve the quality of the devices
[137, 138]. Therefore, one of the most important steps in the fabrication is
the etching of the top gate to obtain a very clean graphite junction. The
channel is made using reactive ion etching. In general, graphene is etched
with O2 plasma, which chemically reacts with the C and can be combined
with Ar to add a physical component to the etching [124]. Two main ap-
proaches were tried, using a combination of Ar and O2 and using only O2.
In the end, the pure O2 recipe proved to give the best results.

The recipes are calibrated on graphite exfoliated flakes on SiO2. After exfo-
liation, an EBL design was made to emulate the actual trenches which will
be made in a real device. After the EBL step, the sample is cold developed
at ca. 10 °C for 50 s in MIBK:IPA (1:3), rinsed in IPA and blow dried with
N2. After the sample is etched, it is introduced in hot acetone for a few
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hours and then left in clean room temperature acetone overnight to increase
the cleanliness inside the etched region. Afterwards, the sample is rinsed in
IPA and blow dried with N2. Finally, the sample is annealed in vacuum for
3h at 300 °C in order to remove the polymer residues. The annealing is done
to have a cleaner surface which results in better contrast in the AFM im-
ages (annealing is not performed on the actual devices). As is visible in the
images of Fig. 4.6, even after annealing the region inside the junction has
some residues. The residues can be further improve by using higher doses
in the EBL, which keeps reducing the size of the PMMA chains and ease its
cleanliness. However, removing all the residues is rather challenging.

Figure 4.6: Optimizing the graphite etching. a, The graphite was etched
with an Ar/O2 for 1 min. b, Zoom-in of a. The trench has “wavy” edges,
instead of a clean straight edge. c, Graphite etched with pure O2 for 3 sec,
leading to a trench with straight edges. f, Zoom-in of d, clearly showing the
straight edges of the etched region, compared with the Ar/O2 case. The scale
bar is 300 and 200 nm for the left and right column, respectively.

The structures are measured in an atomic force microscope (AFM). The
results of the etching with Ar/O2 are shown in Fig. 4.6a-b. A gap of ca. 100
nm is clearly defined. However, there is certain roughness on the edges of
the etched region leading to a “wavy” etched region instead of having clean
straight edges, which would be ideal for the gating. This can happen because
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of the long etching times required as the etching rate is ca. 3 nm/min with
this recipe [124]. In order to improve the roughness we try a different recipe
in which only O2 is used.

The idea is to make an only chemical etching by using pure O2. In order to
increase the quality of the etched structure the recipe used a high power to
achieve etching rates of ca. 1 nm/sec. After the etching the same procedure
as before is followed. The results of such a recipe are shown in Fig. 4.6c
and d. We observe how in this case the edges of the etched region are better
defined, diminishing the roughness observed in the case of the Ar etching.
Based on this observation, the etching recipe containing only O2 is used for
the fabrication of the actual samples.

4.4 Final designs

To conclude this section, a summary comparing the initial and final designs
is made, as shown in Fig. 4.7. The initial designs enabled to have just
one junction per device. The idea was to pre-characterize the MATBG
device, find the best region and make the junction there. However, we soon
realized that more than one region could be magic-angle, meaning that the
junction/device ratio could be improved. Since the main limiting factor of
the project is getting a good MATBG device, improving this ratio could
largely improve the junction yield.

Some of the other considerations such as the “clamping” direction during
stacking or the width ratio between the gates were also not thought of until
some devices had been made, since we did not expect the impact they could
have on the final devices. The width ratio between the graphite gates for
example was not realized until some devices were measured and parts of
the phase space remained obscured. This was not only important for this
project but it matters for any projects including double gated devices i.e.
all the magic-angle family which depends on displacement field like twisted
trilayer graphene.
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4 Junction Design and Optimization

Figure 4.7: Comparison between the initial and the final designs of
the MATBG junctions. a, Initial designs. The top gate has only two con-
tacts, allowing to make one junction per device. b, The device has 8 contacts
to the top gate while keeping all the contacts to MATBG. Junctions can be
made between every pair of contacts.
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5 Gate-defined Josephson junctions

in MATBG

In this chapter we will discuss the basic characterization of the gate-defined
Josephson junction in MABTG. First, the general properties of the MATBG
device are characterized using only the back gate, while keeping VTG = 0
V. Then, both gates will be used independently to map out the presence
of the features coming from the junction. Finally, the two gates are used
simultaneously to define the gate-defined JJ and characterize it.

5.1 Superconductor characterization

(VTG = 0 V)

Before measuring the gate-defined JJ, a full characterization of the SC state
of the device is done. The performed measurements probe the main proper-
ties of the SC: critical current, critical field and coherence length.

5.1.1 Rxx vs. VBG vs. T and B

First, we measure the 4-terminal resistance Rxx vs. back gate voltage Vbg
at different temperatures T and magnetic fields B. Fig. 5.1a shows the Rxx

evolution at different temperatures from T = 35 mK up to T = 10 K of
a θ = 1.11°± 0.02°device. The device displays typical features of MATBG
devices, having the BIs at high doping and highly resistive states at the
integer fillings of the flat band at ν = 0,+1,±2 and +3. In the left of the
insulating state at ν = −2 − δ, with δ << 1, the resistance drops to zero
at low T , signaling the appearance of a superconducting state. To further
confirm the superconducting behavior, Rxx is measured vs. magnetic field
B in Fig. 5.1b. The figure shows how the zero-resistance state quickly
disappears when subjected to magnetic fields of more than 50 mT, and is
completely gone at 300 mT. At the right of ν = 2 the Rxx vs. VBG vs. B
data shows a fast but small Rxx increase in the same B-range as the SC
state. This is likely to be a developing SC at ν = 2 + δ.

As can be seen in Fig. 5.1a, the SC in MATBG has the shape of a dome
with carrier density. That means that the SC state characterization can
be made at different carrier densities n. However when characterizing the
state, we are interested to study the SC at the optimal doping. This can
in general be taken as the point where the critical temperature Tc is the
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Figure 5.1: Temperature and low magnetic field evolution of the
superconducting state. a, 4-terminal resistance Rxx vs. back gate voltage
VBG vs. temperature T . b, Rxx vs. VBG vs. B.

highest. The critical temperature is extracted from the Rxx vs. T data. As
the T is lowered, the resistance experiences a sudden drop to R = 0 Ω at
low T (see inset of Fig. 5.2a). The critical temperature Tc is extracted as
the value of the 50% of the normal state resistance. In this case the optimal
SC doping nS is found to be nSC ≈ 1.72× 1012 cm−2, with a Tc = 3.5 K.

The rest of the measurements (current-voltage (IV ) characteristics, IV vs.
T , extraction of coherence length and Fraunhofer pattern) are taken keeping
n = nSC . Finally, a SC dome characterization is performed.

5.1.2 I − V characteristics

Superconductors are characterized by their non-linear I vs. V behavior.
When the current is increased, first the device will not experience any volt-
age drop, due to the 0-resistance characteristic of the superconducting state.
However, when the critical current Ic is reached, an abrupt jump in voltage
will appear [58]. The I − V characteristics of device A are shown in Fig.
5.2a. As the temperature is increased, thermal excitations also contribute to
break the superconductivity, washing out the sharp I−V transition observed
at the lowest T . In the case of a 2-dimensional SC, the transition from the
SC to the normal state, takes the form of a Berezinskii–Kosterlitz–Thouless
(BKT ) transition, defined by a V ∝ I3 power law [58]. Such a fit is shown
in Fig. 5.2b, extracting a BKT transition temperature of TBKT = 2.25 K.
In this case, the data is taken as the derivative of the voltage, measuring
the differential resistance dV /dI. The dV /dI can help highlight the non-
linearities when the I − V transition is not too sharp and as it is measured
with a lockin it is cleaner than taking the derivative of the original I − V
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curve. The data can be improved by measuring this way when measuring
up to higher T , higher magnetic fields or at dopings at which the supercon-
ducting state is disappearing.

5.1.3 Critical field and coherence length

When subjecting a SC to a magnetic field B, the superconductivity is sup-
pressed due to the depairing of the Cooper pairs. The critical field (Bc) of
the device is obtained as the field value described by 50% of the normal state
resistance. The coherence length of the SC can then be obtained by extract-
ing the Bc at different T by linearly fitting Bc = (Φ0/2πξ

2
GL)(1 − T/Tc),

where ξGL is the Ginzburg-Landau superconducting coherence length (see
Fig. 5.2c). For this particular device we obtain ξGL = 106± 8 nm at T = 0
K, in line with previous reports [40, 44, 48, 43].

5.1.4 Fraunhofer pattern

A final measurement to characterize the SC is the evolution of the I − V
characteristic vs. B. As the IV will become less sharp with increasing B
field, the dV /dI is measured. A key characteristic of MATBG is its twist-
angle inhomogeneity [116], which is intrinsic to the fabrication process. This
implies that when the material is set to a certain doping with the VBG, not
the whole material will be doped homogeneously. In the case of the SC, this
will mean that the material is set to a state with a percolative SC state,
surrounded by insulating islands. Such a state, will behave as an array
of Josephson junctions, and can lead to the appearance of clear Fraunhofer
patterns, as were seen in the first few MATBG devices [39? , 43]. However as
the devices have become cleaner, it is possible to have a more homogeneous
SC state. In this case we don’t expect a clear oscillatory pattern, but rather a
sharp closing of the SC state with field [90]. Such a measurement is shown in
Fig. 5.2d, where a diamond-like feature is observed, showing the cleanliness
of the SC state.

5.1.5 Superconducting dome characterization

To fully characterize the SC dome, the dVxx/dI is measured at different
dopings of the SC. The dVxx/dI vs. VBG data is plotted in Fig. 5.3. The
MATBG SC state has a very distinct shape, in which the right (closer to
the CI) and left side of the optimal doping are clearly different. When
moving towards the CI, the SC closes in a dome-like manner, while when
moving towards largest dopings it develops a tail-like feature in which non-
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5 Gate-defined Josephson junctions in MATBG

Figure 5.2: SC state characterization, n = nSC = −1.72×1012 cm−2

a, Current-voltage (I − V ) characteristic for a wide range of temperatures.
From the lowest temperature data, we extract a critical current of Ic = 240
nA. (Inset) Rxx vs. T transition, with a critical temperature Tc = 3.5 K. b,
Differential resistance dV /dI vs. d. c. current I at various T . Fitting Vxx

∝ I3 yields a BKT transition temperature TBKT = 2.25 K. c, Perpendicular
critical field Bc vs. T taken as half of the normal state resistance values, used to
extract the Ginzburg-Landau superconducting coherence length ξGL = 106±8
nm at T = 0. d, Fraunhofer pattern (dVxx/dI vs. I vs. B), showing a clean
diamond shape decay of the supercurrent.

linearities remain outside of the SC state. Recently such non-linearities have
been assigned to be coming from a Zener-Klein tunneling or Schwinger-like
mechanism [139, 140], which have been used to link the superconductivity
in MATBG with having a quantum geometric origin [139].

5.2 MATBG JJ characterization

After the superconductivity in the device is confirmed and fully character-
ized, the JJ experiments are performed. Due to the gate tunability of the
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Figure 5.3: Superconducting dome characterization. dVxx/dI vs. I
and VBG.

material, the first step is to understand how the gating of the junction acts
and build a “map” in which we know the states that correspond to every
voltage applied on both gates. In the junction devices we define two distinct
regions: the region which depend on both gates and the region which depend
only (mostly) on the top gate. A schematic of the device and a simulation of
the carrier density in these two distinct regions is shown in Fig. 5.4. We refer
to the carrier density outside the junction as n to signal the general carrier
density, and to the carrier density in the junction as nJ . Once the double
gate maps are known we can set n = nSC , and tune only nJ to characterize
the evolution of the JJ. Finally, we will study the Fraunhofer patterns at
different nJ positions to fully confirm the formation of a JJ.

5.2.1 Dual-gate maps

The dual-gate map Rxx vs. VBG vs. VTG provides information about the
position of the different states in the gate − space and it also provides the
capacitance ratios between the gates, which are needed to safely navigate
this space. The dual-gate map corresponding to the current device at 1.8
K is shown in Fig. 5.5a. The map is composed of two distinct features,
which correspond to the n and nJ parts of the device. The diagonal features
marked as gray dashed lines, which depend on both gates correspond to
the region gated by both the back gate and the top gate, such that n =
CBGVBG+CTGVTG, where CTG and CBG are the capacitances corresponding
to the top gate and back gate respectively. The features corresponding to
the junction are displayed as green dashed lines. These features are not
perfectly vertical due to stray fields from the top gates [136], such that
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Figure 5.4: Double gate device structure and its corresponding gat-
ing profile. a, Schematic of the measured device and measuring circuit, where
Vbias is the source voltage, I is the current through the device, Vxx the voltage
drop between the measurement probes and VBG (VTG) correspond to the back
(top) gate voltage. The top graphite gates are separated by 150 nm. b, Elec-
trostatic simulation profile of carrier density n vs. position x, setting n ̸= nJ .
dJ is the actual length of the junction, defined by the electrostatic profile. The
inset shows a schematic of the MATBG JJ with two distinct regions created
by the gating structure.

.

nJ = CBGVBG + αCTGVTG where α << 1. By following the different lines
corresponding to constant n we can change only nJ , effectively creating a
junction. Fig. 5.5b, shows a zoom-in of the same data at 35 mK, to highlight
the SC region. When the gates are set in a position along a diagonal line
following the SC region (keeping n = nSC), the JJ is formed.

5.2.1.1 Considerations when performing the double gate maps
The most important thing we want to avoid when performing these exper-
iments is to have sudden leakage currents in the gates, signaling the hBN
dielectric breakdown. The most dangerous cases occur when measuring at
high opposing voltages on both gates i.e. VBG >> 0 and VTG << 0. Dur-
ing all these measurements the leakage current on both gates needs to be
recorded and special attention is paid to any sudden changes in the slope of
the leakage current or a sudden increase on its value. A useful thing to con-
sider during the measurement is that when sweeping one gate, the position
of the different features in the other gate will change accordingly. The ratio
at which they change will be given by the ratio between the capacitance
of the gates CTG/CBG. By knowing this ratio we can limit our experiment
to the area of interest. For example, if VBG is the fast changing variable
and VTG the slow one, we can set the experiment such that VBG is different
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Figure 5.5: Dual-gate maps. a, Rxx vs. VBG vs. VTG at T = 1.8 K. The
diagonal features marked with gray dashed lines are the integer fillings of the
main regions (n in Fig. 5.4a), depending on both VBG and VTG. Slightly tilted
vertical features, fitted with green dotted lines, are the integer fillings of the
junction region (nJ in Fig. 5.4a), mainly gated by the back gate. Labels of the
integer filling factors marked by dashed lines correspond to: band insulator (BI)
at full filling, correlated insulator at plus/minus three-quarter filling (C±3/4),
plus/minus half filling (C±1/2) and one quarter filling (C1/4) and Dirac point
(D). b, Zoom-in of black-delimited area taken at T = 35 mK, where the
superconducting state is fully developed. White squares mark the diagonal
line in the map at which both main regions are kept in the superconducting
state, and the junction region is set at different doping.
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for every value in VTG. As we know that at VTG = 0, we need to sweep
VBG between −2V < VBG < 2V , to capture all the MATBG features, we
then apply a certain VTG and measure how these features move. By doing
this, we can extract the gates ratio CTG/CBG. Next, we need to know the
limits required in each gate to capture all the experimental features of of
interest. There are two options when performing the measurement: we can
sweep VBG constantly between these two extreme values or we can use our
ratio to sweep VBG such that it only records the relevant data. In the latter
case, our back gate will sweep such that VBG = VBG(VTG=0) −CTG/CBGVTG,
where VBG(VTG=0) is the value of back gate at zero VTG. The former case can
be useful if we are interested in data outside the flat band at intermediate
displacement fields, but it will be a much slower measurement and it will
force the gate more in every sweep, which could lead to a faster degrading of
the dielectric leading up to a leak. The latter case limits the acquired data
to inside the flatband, but it is a faster and safer measurement.

5.2.2 JJ-line: dV /dI vs. I vs. nJ

In order to create a JJ, we keep n = nSC = −1.72× 1012 cm−2, and tune nJ

as shown in Fig. 5.6a. When the whole material is in the superconducting
state SC/SC/SC, as marked in the figure, we observe a single set of coherence
peaks. This corresponds to the optimal doping of the SC in the whole device.
However, as we move either to the left or the right of this doping, we observe
how a second set of coherence peaks develop. This second set of coherence
peaks appear because the doping in the junction is no longer SC, and it is
being proximitized by the SC region, effectively creating a JJ. In the figure
we see how after crossing the ν = −2 CI, we soon loose the JJ behavior, since
the junction is not perfectly proximitized. We still observe non-linearities,
corresponding to Andreev reflection but the JJ effect is lost [24]. As we dope
even further into the conduction band, and therefore further from the SC
doping in the hole band, we eventually see how the junction becomes highly
resistive. We believe that the effect of loosing the proximity when doping
nJ further from the SC state is in a large part related to the gate-defined
nature of the junction. As we dope further, more states will be included in
the gated region due to the slow decaying profile, and the junction will be
effectively too long to support superconductivity [58].

This is better understood by looking at the electrostatic model. For this
device the hBN thicknesses are rather similar, having the simulations with
thBN,top = 20 nm and thBN,bot = 18 nm, the etched junction is 150 nm and
the values of the potentials in the electrodes are taken from the real values of
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the device (from Fig. 5.5). Fig. 5.6b show the response of the case where the
weak link is set very close to the ν = −2 CI (SC/CI’/SC configuration). The
electrostatic potential is converted to n by a factor related to the capacitance
of the top and back gates. From the simulations it is possible to estimate
the effective size of the JJ (dJ), which does not match the length of the
etched region, d ≈ 150 nm. Since n has a slow transition from the SC to
the CI state, the effective length of the JJ is dJ ≈ 100 nm. This effective
length is determined by the n values of the superconducting state. Fig. 5.6c,
show the same results for a configuration in which the weak link is set past
the CI at ν = −1.5. In this case the effective length of the JJ is ≈ 170 nm,
larger than the etched graphite region. This shows how the value of VTG and
VBG directly influence the shape of the actual junction. Furthermore due to
the complexity of the phase space in MATBG, different phases will appear
when gating further from the SC position. For example, in Fig. 5.6c part
of the weak link is set at the CI and part at the normal metal N. This adds
an extra complexity to the system, since the supercurrent will go through
different phases in the material, and some of these phases can become highly
resistive. This can explain why proximitizing the weak link across the whole
flat band can be complicated in these kind of gate-defined junctions.

Finally, we note how there are some interesting features mostly in the region
around ν = −2, where it seems that there are not just two sets of coherence
peaks, but that rather several peaks appear. Such behavior can be related
to the appearance of multiple Andreev reflections (MAR) in the junctions
[141, 142, 143].

5.2.3 Fraunhofer patterns vs. nJ

To further analyze the gate-induced junctions, we set the gates at different
values of nJ and apply an out-out-of plane magnetic field B. In the case
of a clean MATBG SC we expect a diamond shape decay as shown in Fig.
5.2d. In the case of having a JJ, the field should decay in an exponentially
oscillatory manner, as explained in Ch. 2. Such data is shown in Fig. 5.7,
where Fraunhofer patterns at different nJ values are shown. We observe how
when doping away from the SC/SC/SC position towards the normal metal
SC/N/SC or the correlated insulator SC/CI/SC, clear oscillations start to
appear. This finally proves the appearance of a gate-defined JJ in the device.

However the three patterns are clearly distinct. In the case of the SC/SC/SC
and the SC/N/SC, we observe how the patterns are symmetric w.r.t. the
inversion of the current and the field I+c (B

+) = I−c (B
+) and I+c (B

+) =
I+c (B

−), as is expected for a regular JJ. In stark contrast, the Fraunhofer
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Figure 5.6: JJ-line measurement: dVxx/dI vs. nJ vs. I with n =
nSC a, Changing nJ while keeping n = nSC changes the junction over all the
different features of the MATBG device. As nJ gets very different from n, the
proximity effect is lost. White dashed vertical lines show the position of the
different CIs and CNP, while green dashed lines mark the limit of the SC state.
b-c, Electrostatic simulation with the weak link at ν ≈ −2 and at ν ≈ −1.5,
respectively.

pattern at the SC/CI’/SC position shows a very unusual pattern, which is
not symmetric with inversion of the current I+c (B

+) ̸= I−c (B
+) and the field

directions I+c (B
+) ̸= I+c (B

−). These asymmetries are combined with more
unusual properties, such a hysteresis with the inversion of the field and the
current directions and a revival of the oscillations at larger B fields. The
study of this Fraunhofer pattern at the SC/CI’/SC position will be the topic
of the next chapter.
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Figure 5.7: Fraunhofer pattern characterization of the JJ. a, (Top)
Magnification of Rxx vs. ν (Fig. 5.1a) around the superconducting state
−3 < ν − 1.8, where we define three distinct regions with metallic (N), super-
conducting (SC) and correlated insulator (CI) behavior. (Bottom) Zoom-in
of Fig. 5.6 around the SC state. dVxx/dI vs. I at different nJ , keeping
n = nSC = −1.72 × 1012 cm−2 in the SC state. Dashed green vertical lines
mark the position where nJ is no longer in the SC state. b, Fraunhofer patterns
measured at (left) nJ = −2 × 1012 cm−2 (SC/N/SC), (center) −1.72 × 1012

cm−2 (SC/SC/SC) and (right) −1.56 × 1012 cm−2 (close to SC/CI/SC), re-
spectively. The color dots show the corresponding nJ positions in the dVxx/dI
vs. I map in a bottom.
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6 Symmetry-broken Josephson
junctions and superconducting
diodes in MATBG

This chapter is dedicated to understanding the unconventional Fraunhofer
pattern of the SC/CI’/SC JJ configuration which was shown in Fig. 5.7.
This unconventional Fraunhofer pattern shows asymmetry both in the direc-
tion of the current and field directions, which indicate a breaking of inversion
and time reversal symmetry [144]. To further understand the origin of these
signals we first make a phenomenological model based on the current density
distribution of the junction. Secondly, we study the magnetism by measur-
ing the T evolution of the pattern and making a tight binding model to see
which possible state of MATBG could explain the observed signals. Finally,
we prove how the broken inversion and time reversal symmetry allows us to
have a reversible zero-field superconducting diode.

In order to better observe the current and field direction asymmetries, we
extract the critical current Ic vs. B and plot the linecut of dVxx/dI vs. I
at B = 0 mT of the pattern (Fig. 6.1b and c). Most strikingly, for both
measurements we observe a hysteresis with the B-field direction. For the
Ic measurement we measure the Fraunhofer pattern in opposing B-field di-
rections and extract the corresponding Ic values, defined by the contour of
zero-resistance state in the data. For the dVxx/dI plot, we extract the zero-
field value dVxx/dI trace after having applied two different pre-magnetizing
fields BM . We observe a clear hysteresis showing a reversible non-reciprocal
transport behavior, with the SC being increased for a certain current direc-
tion depending on the previously applied BM .

6.1 Asymmetries and edge states

The Fraunhofer pattern at this nJ measured up to higher magnetic fields
(Fig. 6.1a) shows a revival of the oscillations and the SC state after a field
of ±30 mT, where the oscillations have completely decay and then reappear
again. The double periodicity suggests the presence of edge states giving
rise to a SQUID-like type of behavior [145]. In order to better understand
the origin of the signals (the revival of the oscillations and the asymmetry
of the data), we make a phenomenological model in which we calculate a
Fraunhofer pattern corresponding to a given current density distribution in
real space.
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Figure 6.1: Fraunhofer pattern at SC/CI’/SC with nJ close to ν =
−2. a, Same Fraunhofer pattern as in Fig. 5.7b extended to higher magnetic
fields. b, Positive critical current I+c vs. B with B sweeping up (blue) and
down (red). c, dVxx/dI vs. I at B = 0 mT after applying a pre-magnetizing
field BM = +50 and −50 mT for the red and blue curve.

6.1.1 Modeling Fraunhofer patterns from current
density distribution

The critical current Ic of a JJ in a perpendicular magnetic field is represented
by the modulus of the Fourier transform of the current density distribution in
real space Js(x) [146]. Therefore one can extract Js(x) of a JJ by calculating
the inverse Fourier transform of the measured Fraunhofer pattern. The
process to calculate the Fraunhofer pattern from Js(x) is done following the
procedure developed by Dynes and Fulton [146]. Given a certain Js(x), its
complex Fourier transform will yield a complex critical current function:

Imc(β) =

∫ ∞
−∞

Js(x)e
iβx dx (6.1)

where β = (dJ + 2λ)B/Φ0 is a normalized field in units of µm, dJ is the
length of the JJ and λ is the penetration depth into the superconducting
electrodes. The extra λ component is used to take into account the fact
that the real length will be extended due to the field penetration into the
SC electrodes. The experimentally measured Ic is then given by the modulus
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of this complex current density distribution:

Ic(β) = |Imc(β)|. (6.2)

In our case, an additional adjustment is made, since we are dealing with
JJs in a two-dimensional material. As explained in Ch. 2, the Fraunhofer
pattern will then be dominated by the relation ∆B2D ≈ 1.8Φ0/w

2, instead
of the more conventional ∆B3D ≈ Φ0/wL, where L is the length of the
junction (considered dJ + 2λ here). Therefore we modify the parameter L
inside the β parameter for the approximation w/1.8 to account for the fact
that the material will not screen the magnetic field.

A homogeneous Js(x) will give the regularly studied Fraunhofer pattern,
while more complex current density profiles lead to more complex diagrams.
Here, we focus on the presence of possible edge states which contribute to
the supercurrent. The calculated Fraunhofer patterns with different com-
bination of bulk and edge conduction channels are shown in Fig. 6.2. We
observe how by having a combination of edge and bulk contribution we can
model the revival of the oscillations observed in experiments (Fig. 6.2c,f).
Compared with the only-edge-states case, another difference is the decaying
of the central lobe. When only having edge states, the central lobe has a
very slow decay while in the case combining edge and bulk supercurrent, the
fast decay corresponding to the bulk Fraunhofer pattern is conserved.

After having seen that the revival can be modeled by a combination of
edge and bulk supercurrent (Fig. 6.2), we want to focus and try to simu-
late the observed asymmetries, mainly the fact that I+c (B

+) ̸= I−c (B
+) and

I+c (B
+) ̸= I+c (B

−). In order to simulate these asymmetries we introduce
some phase shifts into the patterns to simulate the magnetic origin of the
signals. The phase shifts are introduced as an extra field in the β parameter
by substituting B = Bext + φ, where Bext is the external field and φ will
be the extra phase. This phase could have different origins [147], but in
this model we just study it as a component which changes the effective field
experienced by the sample. The next step is to separate these phases for the
different components of the pattern by introducing φedge1, φedge2 and φbulk,
corresponding to the different edges and the bulk of the JJ (these parts are
highlighted in the cartoon in Fig. 6.3a). When φedge1 = φedge2 , we refer to
it simply as φedges.

The obtained Fraunhofer patterns corresponding to different combinations
of these phases are shown in Fig. 6.3. In general we keep φbulk = 0, because
we are interested in the asymmetries of the data. The bulk phase would
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Figure 6.2: Fraunhofer patterns corresponding to different Js(x).
a-c, Normalized critical current Ic/Ic,max vs. perpendicular magnetic field B
corresponding to the current density Jc distributions shown in d-f, where x is
the direction in the length of the JJ.

contribute to a total shift of the pattern, but it does not produce any asym-
metries. We find that the asymmetries in Ic(B) arise when φbulk ̸= φedges,
yielding a signal in which I±c (B

+) ̸= I±c (B
−), as we observe in the ex-

periment. In order to obtain the current-field coupling leading to the tilt
of the signal, the phase of the edges needs to change sign with the cur-
rent direction: sgn(φedges(I

+)) = −sgn(φedges(I
−)). By introducing this

current induced phase, we obtain all the broken symmetries observed in
the pattern at the SC/CI’/SC position, that is: I+c (B

+) ̸= I−c (B
+) and

I+c (B
+) ̸= I+c (B

−), while keeping the symmetry along the I −B coupled di-
rection: I±c (B

+) = I∓c (B
−). These correspond to having a broken inversion

symmetry [144]. In the experiment I±c (B
+) ̸= I∓c (B

−) due to the magnetic
hysteresis, which breaks time reversal symmetry T . The breaking of T could
be introduced in our model as well just by adding an extra phase to the whole
device, which would shift the pattern to the positive or negative direction.
Finally, the pattern that resembled most the data (Fig. 6.3d) is obtained by
also making φedge1 ̸= φedge2 , such that both edges carry a different phase.

From this model we can conclude that the measured Fraunhofer pattern
requires the presence of edge states which carry an additional phase with
respect to the bulk φedges ̸= φbulk, this phase changes sign for a given cur-
rent direction φedgei(I

+) = −φedgei(I
−) and, in addition, there is a general
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Figure 6.3: Asymmetric Fraunhofer patterns corresponding to dif-
ferent symmetry broken current densities. a, Current density profile to
calculate the Fraunhofer patterns including both bulk and edge contribution.
The inset shows a cartoon displaying the superconducting TBG forming the
JJ (SCTBG) in light green and the weak link with bulk and edge contribution
in purple and violet, as well as the different phases carried by the edges ϕedge,n,
where n = 1, 2 for the top and bottom edge respectively b, Modeled Fraun-
hofer pattern based on the current density profile of a having a different phase
between edge and bulk but with the same phase between edges. c, Same as
b, but the phase of the edges changes when inverting the current direction. d,
The phases of the two edges are opposite and they change sign upon changing
the current direction.

magnetism in the junction which is responsible for the global phase shift
and the hysteresis at low T . Fig. 6.4a-c plots the original data next to the
Fraunhofer from Fig. 6.3d, which better reproduces the data

A second sample with twist angle 1.04 ± 0.02° has also been measured
(device B). The Ic(B) behavior of the new sample at the SC/CI’/SC position
is shown in Fig. 6.4d. In this case we do not observe any asymmetries or
hysteretic behavior, but the sample displays clear SQUID-like oscillations.
We can again model the pattern, in this case having a supercurrent which
is purely carried by the edge states (Fig. 6.4e), hinting that in device B the
CI state has a more insulating bulk than for device A. For both devices we
observe how in the SC/CI’/SC configuration edge states play an important
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Figure 6.4: Fraunhofer patterns emerging from edge state supercur-
rent of device A and B. a, Fraunhofer pattern at the SC/CI’/SC posi-
tion of sample A. b, Calculated Ic(B) behavior based on the current density
distribution shown in c. A combination of edge and bulk supercurrent with
non-symmetric edges give rise to a qualitatively similar pattern as measured
in experiment. c, Current density distribution combining edge and bulk su-
percurrent. d, Fraunhofer pattern at the SC/CI’/SC position of sample B.
The pattern resembles a pattern coming from purely edge supercurrent. e,
Calculated Ic(B) behavior based on the current density distribution shown in
f, in which all the supercurrent is carried by the edges. f, Current density
distribution with only edge conduction. The inset shows a cartoon in which
the current is only carried by edge states, without acquiring any extra phase.

role carrying the supercurrent.

6.2 Magnetic Josephson junction

Next, we analyze the magnetic signatures observed in device A. First, we
analyze the Fraunhofer pattern at an elevated temperature of T = 800 mK,
where the hysteretic behavior at low field (shown in Fig. 6.1b) has not yet
developed and describe a tight-binding model in which we can simulate the
observed signatures by having a valley polarized state with Chern number
C = −2 as the weak link of the junction. Then, we study the temperature
evolution of the Fraunhofer pattern as the sample is cooled down to the base
temperature of T = 35 mK. Finally, we close this section by discussing the
possible origins of the different signals.
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6.2 Magnetic Josephson junction

6.2.1 800 mK results

The Fraunhofer pattern at 800 mK is shown in Fig. 6.5b. The pattern
at this T has the following unconventional features: 1. The central peak
of the pattern is shifted from B = 0 to a value of ≈ 2.5 mT; 2. The
Fraunhofer pattern is highly asymmetric with respect to the central peak;
3. The critical current Ic does not vanish as a function of field at each
Φ/Φ0 as in regular Fraunhofer patterns; 4. Upon inversion of the current
direction a different pattern is observed and the central peak is shifted as
shown in Fig. 6.5d. At B = 0 for example the critical current is dramatically
different for current flowing in opposite directions I+c (B = 0) ̸= I−c (B = 0);
5. The critical current shows a hysteresis and the directional dependence of
the critical current appears only when the system is pre-magnetized by an
external magnetic field larger than a coercive field of ≈ 300 mT (purple and
orange line in Fig. 6.5a). The fact that none of these features are observed
in the SC/SC/SC and the SC/N/SC junctions, we suggest that the CI state
in the middle of the JJ is an unconventional insulating state responsible for
the observed Fraunhofer pattern.

Qualitatively, the shift of the central peak, the breaking of the time-reversal
symmetry condition I+c (B

+) = I+c (B
−) and the hysteresis behavior all sug-

gest that time-reversal symmetry is broken and there is a spontaneous net
magnetic flux which is responsible to move the position of the central peak
away from the B = 0 position. Furthermore, the observed behavior in Fig.
6.4 indicates that edge states play an important role in carrying the super-
current. It is important to note that the observed unconventional Fraunhofer
patterns are highly reproducible, i.e. we do not observe significant changes
in the patterns after several thermodynamic cycles of warming up and cool-
ing down the sample. We also note that this phenomenon is observed for a
limited range of doping when the weak link is set at ν = −2− δ, very close
to the CI at ν = −2 but not exactly at the insulating state.

The question to ask is: which microscopic state of MATBG near of ν = −2
can explain the observed features? We propose below that the observed
experimental features are consistent with the assumption that the CI is an
interaction induced valley polarized state with net orbital magnetization.

6.2.2 Valley polarization in the JJ

The energy bands of MATBG consist of 4 flavors due to the spin and valley
symmetries, whose degeneracy is protected by the C2T symmetry of the
system. It has been shown however that this symmetry can be broken by
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Figure 6.5: JJ with orbital magnetism. a, dVxx/dI vs. I measured at
B = 0 mT and T = 800 mK right after cooldown (black) and after the sample
has been subjected to two opposing pre-magnetizing fields BM . The curves
are vertically shifted by 2.5 kΩ each for clarity. The inset shows a schematic
of magnetization M vs. B. The colored dots correspond to the magnetic
states in which the different dVxx/dI vs. I curves were taken and the arrows
describe the direction in which the field is swept. b, Fraunhofer pattern with
nJ = −1.56 × 1012 cm−2 measured at 800 mK. The white dashed lines mark
the 0 current and 0 field positions. c, (Top) Positive critical current I+c vs.
B at 800 mK. The vertical dashed lines remark the shift of the I+c maximum
from zero field. (Bottom) Theoretical I+c vs. magnetic flux (Φ) normalized
by the flux quantum (Φ0) calculated for a MATBG JJ with a valley-polarized
ν = −2 state as the weak link. The pattern has been shifted by +Φ0 to
compare with the experiment. d, Experimental I+c and |I−c | vs. B, extracted
from b. Reversing the current direction inverts the line-shape of the curve and
changes the shift in magnetic field. e, Theoretical I+c and |I−c | vs. Φ for a
MATBG JJ with a valley polarized ν = −2 state as the weak link. To compare
with the experiment, a shift of +Φ0 and +0.2Φ0 were added to I+c and |I−c |,
respectively.
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breaking either C2 or T symmetry, for example aligning to hBN breaks the
former and applying a magnetic field breaks the latter [148, 53]. It has been
argued how the strong interactions can be enough to break the symmetry,
leading to the appearance of different topological bands with certain Chern
number [41]. A possible state that might arise in the case of the ν = −2 CI
is a valley polarized state with Chern number C = −2.

Several experimental signatures support this hypothesis. Such a state has
been previously identified at slightly elevated magnetic fields B > 300 mT
[90], which is in good agreement with the observed coercive field of the
JJ. Moreover, the orbital magnetic moment of this state is very large ≈
6 µB (Bohr magneton) [88] and results in an out-of-plane magnetic field
of B ≈ 3 mT. This is consistent with the experimentally obtained phase
shift of ∆B ≈ 2.5 mT. The phase shift of the Fraunhofer pattern survives
up to the critical temperature of the JJ of Tc ≈ 1 K, and is comparable
to the Curie temperature of previously observed orbital magnetic states in
hBN aligned [51, 50] and non-aligned MATBG [44, 48] as well as in twisted
mono-bi graphene [149, 150]. Finally, the valley polarized state with orbital
magnetization is characterized by the presence of edge states, which would
arise as observed in the Fraunhofer patterns of Fig. 6.4.

To further support this hypothesis, we construct a MATBG based JJ model
by assuming the CI in the central region to be a valley polarized state with
net Chern number C = −2 at filling factor ν = −2, while the Chern bands
are partially filled (see the SI of [71] for details and the main text of [147] for
a follow-up theoretical work). The superconducting part of the JJ is assumed
to be a fully gapped superconductor with s-wave pairing. The theory clearly
reproduces the asymmetry with respect to the central peak of the unconven-
tional Fraunhofer pattern (Fig. 6.5c). Unlike in the case of a conventional
Fraunhofer pattern, it is asymmetric with respect to the B-field direction,
where Ic(B

+) > Ic(B
−). We found that removing the C2T breaking terms

will make the bands topologically trivial with no Berry curvatures nor net
orbital magnetic moments. In this case, a standard Fraunhofer pattern is
obtained (Fig. 6.6). This suggests that this behavior is a direct consequence
of the electronic ground state near ν = −2 carrying orbital magnetization.
We can also simulate the behavior of device B by setting the chemical po-
tential into the gap of the CI, equivalent to having a more insulating bulk,
in which case the current is solely carried by edge states, consistent with the
results shown in Fig. 6.4. Therefore, the main features of both devices can
be captured within the same model.

To explain the directional dependence of the critical current in Fig. 6.5d,
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Figure 6.6: Fraunhofer pattern in the presence of valley polarization
and orbital magnetism. a, Standard Fraunhofer pattern when the weak link
is a metal. b, Same Fraunhofer pattern having a shift of ΦM in the Fraunhofer
pattern due to the orbital magnetism. c, Typical Fraunhofer pattern near
half-filling, which supports an insulating gap. The asymmetry is induced by
the valley polarization. d, Fraunhofer pattern near half-filling with no C2T
symmetry breaking terms. The asymmetry is not present in this case as there
is no orbital magnetization.

one extra assumption is needed. Namely, that the current I ≈ 10 nA can
induce orbital magnetization switching similar to the current induced orbital
magnetization switching, which is observed at a filling of ν = 3 in MATBG
[51, 50, 149, 151, 152, 153]. In other words, a small current can overcome
the free energy barrier between two degenerate orbital magnetization states
of the CI. With this assumption, which is further motivated by the phe-
nomenological model of Fig. 6.4, the directional dependence of the critical
current is well explained (Fig. 6.5e). In the case of device B, the fact that
there is no bulk current and the Ic is an order of magnitude smaller (∼ 5 nA
vs. 80 nA), could be the reason why no asymmetry is observed. However,
further theoretical study is needed to understand the current induced orbital
magnetization switching in this C = −2 state.

6.2.3 Low Temperature Magnetism

The Fraunhofer pattern of device A at low temperatures is even more in-
triguing. Figure 6.7a and b show it for T = 500 mK, where it is measured
by sweeping the B-field up (a) and down (b). Strikingly, both Fraunhofer
patterns show a phase jump (marked by an arrow), which was not observed
at higher temperatures. Comparing the two Fraunhofer patterns, one no-
tices that they are phase shifted, and overall symmetric with respect to the
reversal of the current and B-field directions, I+c (B

+,→) ≈ I−c (B
−,←). Its

phase jump is hysteretic and occurs at different B-fields for the up (B→) and
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Figure 6.7: Evolution of magnetic hysteresis with temperature. a-
b, Fraunhofer patterns measured at 500 mK with field sweeping up (a) and
down (b) as marked with the black arrows. The white dashed lines mark the 0
current and 0 field positions. The colored arrows highlight a period change in
the pattern and the fact that by rotating a by 180° one would get the periodicity
of b. c, I+c extracted from the Fraunhofer patterns with the magnetic field
sweeping up (blue) and down (red) at 800, 500 and 35 mK. The curves are
vertically shifted by 60 nA each for clarity. d, Extracted ∆B vs. T for I+c .
The red curve is a fit to the Curie-Bloch equation (1 − T/Tc)

α with fitting
parameters Tc ≈ 750± 25 mK and α ≈ 0.4± 0.05. The error bars are defined
as the standard deviation of the extracted Ic values.

down (B←) sweeps. Such B-field hysteresis is better seen in the line-cuts
in Fig. 6.7c, which shows the I+c (B) for both field sweeping directions at
T = 800, 500 and 35 mK. Here we define ∆B as the difference between the
maxima of the I+c (B

+) and I+c (B
−) sweeps. If we understand this hysteresis

as the magnetization of the sample and plot its temperature dependence, we
can fit it with a Curie-Bloch equation [154] ∆B ≈ (1 − T/Tc)

α (Fig. 6.7d)
obtaining a Curie temperature Tc ≈ 750± 25 mK and α ≈ 0.4± 0.05. The
different Fraunhofer patterns taken at increasing T from 35 to 800 mK from
which the data is obtained are plotted in Fig. 6.8.
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Figure 6.8: Temperature dependence of the SC/CI’/SC Fraunhofer
pattern and its hysteresis. a-e, Fraunhofer patterns measured at nJ =
−1.56× 1012 cm−2, at increasing T from 200 mK to 700 mK and by sweeping
the magnetic field up, as marked with the black arrow. Insets of each plot show
a dVxx/dI vs.I linecut at B = 0 T. f-k, Corresponding Fraunhofer patterns to
a-e respectively, at the same temperature but opposite magnetic field sweep
direction. l-p, Extracted I+c from the corresponding temperatures and with
field sweeping up (blue) or down (red).

6.3 Discussion

Both the hysteresis of Ic(B) and the phase jumps are prominent charac-
teristics of ferromagnetic JJs [155, 156, 157]. The hysteresis is induced by
the switching of the magnetic moments and the phase jumps are due to the
presence of domains switching at different field values. In Fig. 6.8 it is clear
that when lowering the T more phase jumps appear, which is consistent
with the development of more magnetic domains in the sample. While the
I−B asymmetry, indicative of orbital magnetism, continues to be present in
the Fraunhofer pattern at lower temperatures, the low T hysteretic features
cannot be fully explained by it. These appear at a lower temperature and
require switching field |BM | ≥ 3 mT that is two order of magnitude lower
than observed for the valley polarized state (see Fig. 6.9). Therefore, a
further theoretical explanation is needed to explain these lower T features
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which have a clear distinct behavior.

Figure 6.9: Distinguishing between high and low field hysteresis.
dVxx/dI measured right after cooling down (black curves) or after applying
different pre-magnetizing fields BM at T = 35 mK a, and T = 800 mK b,
While at 35 mK, fields above 3 mT are enough to switch the magnetic state, at
800 mK, fields above 300 mT are needed, proving the presence of two distinct
effects.

Without further theoretical insights, we can just propose possible scenarios
based on the data. A first scenario would be to have both spin and valley
polarization, for example, by having a partially valley-polarized state, in
which both the spin and valley flavors have a population imbalance. Such
states have been studied recently as possibilities to explain magnetic signals
observed at ν = −2 [158] and had been previously discussed in literature
[89]. In this scenario the valley and spin polarization could have different
energy scales, being responsible for the observed signals. Another alternative
would be to have domains of different magnetic behavior as has been recently
observed in a SQUID on tip experiment by Grover et al. [159]. In the domain
picture, there could be domains all of orbital origin or a combination of
domains of orbital and spin origin. In the latter case the spin and orbital
domains could behave differently while, in the former case, the different
behavior could be coming from domains of different sizes or domains having
a different type of magnetic behavior as was observed in [159]. Considering
the phase jumps in the data at low T and the modeling of the current density
with opposing phases on both edges, the domain picture might be a more
likely scenario. However, a definite proof of the origin of these signals cannot
be drawn from the present study.
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6.4 Superconducting diode effect

A direct consequence of the remnant magnetization and its current induced
magnetization switching in the MATBG JJ, is its non-reciprocal transport.
This is demonstrated in the dVxx/dI vs. I curves taken at B = 0, which
show highly non-symmetric behavior with respect to the current direction.
As can be clearly seen in Fig. 6.10a, for a fixed current value |I| ≈ 10−50 nA
the device can be superconducting in one current direction, while highly re-
sistive in the other. This behavior enables the creation of a superconducting
diode, which is the superconducting analog of a p−n junction, and is highly
sought after as a building block for superconducting electronics. Since the
magnetization direction can be switched by a small field BM (red and blue
lines in Fig. 6.10a), the polarity of the current asymmetry can be switched,
and the direction of the diode reversed, making it so programmable. We
demonstrate the superconducting diode behavior in Fig. 6.10b, where we
apply |I| ≈ 25 nA and continuously switch the current direction. Simulta-
neous measurements of the device resistance show that the device is clearly
resistive in one current direction and superconducting in the other, depend-
ing on the magnetization direction.

Figure 6.10: Zero-field switchable superconducting Josephson diode.
a, dVxx/dI vs. I measured at 35 mK. All curves are taken at B = 0 mT
after pre-magnetizing the sample at BM = +50 mT (red) or BM = −50 mT
(blue). The shaded gray regions mark the values of current at which the diode
behavior is observed. b, Switching between resistive and superconducting state
by changing the direction of I as shown in the top panel. By applying opposite
BM , the diode behavior is inverted (red and blue curves).

While the superconducting diode effect has been previously realized in Rashba
superconductors due to the magnetochiral anisotropy effect [160, 161], as well
as in van der Waals JJs [162], the present device offers new capabilities as it
is fully tunable and can be operated at zero magnetic field. The study of the
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superconducting diode can provide more information about the system. In
particular, observing the superconducting diode at zero B field is a further
proof of the broken inversion and time reversal symmetries [163]. After this
work, there has been an experiment in twisted trilayer graphene which has
also reported the observation of a superconducting diode effect at zero field.
In that the case, they argued that the origin is most likely to come from
an imbalance in the valley polarization of the bands [164]. Lastly, there
has been follow up theoretical work on our experiment, where the observed
superconducting diode effect can be explained by the valley polarization of
the weak link [165].

6.5 Conclusion

To summarize, we have proved that time reversal symmetry broken states
can coexist with superconductivity in a single MATBG device. The zero-field
coexistence and gate tunability of the magnetic and topological phases with
superconductors in MATBG presents a remarkable opportunity to electron-
ically hybridize these phases through engineering of complex gate induced
junctions. This will lead to the creation of ever more complex quantum
phases based on the MATBG platform. Also, the so created JJs can shed
new light on the underlying ground states of MATBG, as the JJ probes
much smaller areas than traditional transport experiments and are highly
sensitive to magnetic fields.
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The main aim of this thesis is to develop gate-defined Josephson junctions
in MATBG. In order to create the double gated structures the chosen metal
for the gates was graphite. The main reason to choose graphite over an
evaporated electrode such as Au was the fact that we can make an entire
device composed of van der Waals layers which has been shown to give
better cleanliness than having to evaporate an external metal [20]. From
the possible ways to make a JJ, we decided to use a three gate approach
(where the top gate is split in two), since this would allow for more flexibility
in the experiments, allowing us to change the two sides of the junction
independently. By keeping the back gate grounded VBG = 0 V and tuning
the two top gates independently, one can for example create a pn-junction.
By studying the light induced response of the pn-junction, one can obtain
information about the light-matter interaction in the material, which has not
been widely studied so far [166, 167]. The advantages of using a pn-junction
instead of just measuring the global Hall bar include that it allows to study
the optoelectronic properties locally, it increases the response immensely and
controlling the gates allows to understand the mechanism responsible of the
response [168].

In this section we study the light-matter interaction of MATBG by looking at
the cooling dynamics of the electrons upon light illumination. This allows us
to extract information about the electron-phonon interactions in MATBG.
We observe how the cooling rate at low T is faster in the twisted devices
(θ = 1.24° and θ = 1.06°) than in a non-twisted Bernal graphene sample by
several orders of magnitudes [72]. While at low T the cooling time in the
bilayer graphene takes nanoseconds due to the reduced acoustic phonons at
low T , the measured times in the twisted samples remain in the picosecond
range, even at 5 K. We argue that the increased cooling times are due to
Umklapp scattering enabled by the mini-Brillouin zone, which allows to
overcome the electron-phonon momentum mismatch.

First I will show the transport characterization of the pn-junction devices
which are used for both experiments and then summarize the main results
of the first experiment.
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7.1 Transport characterization of the

pn-junctions

The studied devices are all made in the same way as the ones used for the JJ
experiments, consisting of hBN encapsulated double gated MATBG, which
are fabricated into a Hall bar structure. In this chapter three different de-
vices are used: one non-twisted device, one near magic angle device θ = 1.24°
(device A) and a magic angle device θ = 1.06° (device B). Prior to perform-
ing the optoelectronic measurements, the devices are pre-characterized in
transport at low T to extract the angle and study the transport pn-junction
behavior by independently tuning the two top gates while keeping the back
gate grounded VBG = 0 V.

Fig. 7.1 shows the images of the two twisted devices and their Rxx vs. VBG

temperature and B field dependence. Both devices show typical features of
a MATBG device, showing a sharp CNP, the BIs at full filling of the flat
band and different CIs states at partial fillings of the band. Knowing which
CIs are present in the devices is important to later understand the double
gate maps when making the pn-junctions. In order to extract the twist angle
the devices are measured vs. perpendicular magnetic field B at 1.8 K (Fig.
7.1e and f). From fitting the Landau levels as explained in Ch. 3 we can
extract the twist angle of the devices.

7.1.1 Dual gated maps: pn-junction

In the previous chapter, we used the back gate and the two top gates together
to define the JJ. In this case, we measure across the junction while individ-
ually sweeping each of the top gates while keeping the back gate grounded.
By sweeping both gates, namely VTG1 and VTG2, corresponding to each of
the top gates, we can obtain the full phase space of the pn-junction device.
Such maps are shown for Device A and B in Fig. 7.2, where the vertical
features correspond to top gate 1 and the horizontal features to top gate two.
The fact that the features are perpendicular to each other means that the
gates are effectively decoupled. In both cases we observe a slight asymmetry
between the two gates that is due to small twist angle differences between
the left and right side of the junction, leading to not having exactly the
same features on both sides. For device A, the map measures all the way
to the BIs of both gates, which is shown as the red “frame” of the map.
The features corresponding to CNP, ν = ±2 and full filling are visible in
both gates. However ν = ±3 is only visible for VTG2. For device B, the
measurement is shown until just before the BIs, except for ν = +4 of the
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VTG1. The features corresponding to CNP and ν = ±2 are visible for both
gate configurations, while ν = +3 is shown only for VTG2 and ν = +1 only
appear for VTG1.

Figure 7.1: Device pictures and longitudinal resistance Rxx plots.
a, Device a image. Measurement scheme is shown with the current bias I,
longitudinal resistance contacts Rxx, the ground and the used gates VTG1 and
VTG2. b, Same scheme but for device B. c, d, Temperature dependence of Rxx

vs. n for device A and B, respectively. The colored ranges mark the position
of the different CIs in the sample. e, f Landau fan at 1.8 K for device A and
B, respectively.
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Figure 7.2: Dual top gate maps corresponding to Device A (a) and
Device B (b). The vertical and horizontal features correspond to VTG1 and
VTG2, respectively. In device A we observe CNP ,ν = ±2 and pm4 for both
gates and ±3 for VTG2. In device B, we observe CNP and ν = ±2 for both
gates, while we observe ν = +3 for VTG2 and ν = +1 for VTG2

.

7.2 Ultrafast Umklapp-assisted electron-phonon

cooling in MATBG

After pre-characterizing the devices and extracting the twist angles, we can
proceed to perform the optoelectronic experiments. The experiment is de-
scribed here as presented in the work by Mehew et al. [72].

Electron-phonon coupling can be studied by using excited-state relaxation
measurements, in which a laser is used to thermally excite the electrons.
First, the electrons get thermally excited to a high energy state. The ex-
cited electrons will then thermalize to a hot carrier distribution (a Fermi-
Dirac distribution at higher T than the original state) by electron-electron
scattering. Finally, the hot electrons will cool down via electron-phonon in-
teractions (acoustic, optical or substrate phonons) (see Fig. 7.3). Here we
follow the convention of [169] where high-energy carriers are carrier without
a well defined T (are not thermalized) and hot-carriers are the thermalized
carriers. Importantly, all the cooling pathways happen in the order of ps at
Troom but become less efficient and thus slower, as the T is lowered due to
the de-population of phonons which effectively carry the heat away [169].

Here the cooling dynamics of MATBG are studied by exciting the electrons
via illumination of a pn-junction (see Fig. 7.4a). When illuminating the
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Figure 7.3: Schematic of cooling dynamics in graphene. a, Diagram
explaining the different steps in the excitation-relaxation dynamics of electrons
in graphene. η represents the heating efficiency and τ the timescale. b, Possible
cooling pathway mechanism for hot carriers in graphene. Each process has a
time constant τ . Figure adapted from [169].

MATBG pn-junctions, a photovoltage is developed via the phothermoelec-
tric effect, which is proportional to the electron temperature Te. The cool-
ing dynamics of the MATBG electrons are studied using two independent
techniques: time-resolved photovoltage (TrPV) microscopy [170, 171] and
continuous wave photomixing (CW-PM) [172, 173]. In both techniques, the
detuning between two laser beams, either in real time or in the frequency
domain, is used to directly probe the cooling dynamics of the sample. In the
TrPV technique, the delay time between two ultrashort pulses (ns pulses)
is varied. Due to the sub-linear response between carrier temperature and
optical heating, a dip in the photovoltage is observed when the two pulses
arrive at the same time (dt = 0). At longer delay times, the signal recov-
ers to its maximal value. The cooling time is obtained by describing the
observed dynamics with an exponential function. In the CW-PM, the wave-
length detuning between two CW lasers creates an optical beating, which
makes the photovoltage oscillate at the beating frequency Ω. Due to the
competition between the beat frequency and the characteristic cooling time
τe, a peak is observed for Ω = 0 whereas the oscillations are damped when
Ω−1 << τe. The frequency response takes the form of a Lorentzian function
of width Γ, from which the cooling time is extracted as: Γ = 1/πτe. If the
system is not able to cool down in between the laser pulses, it will heat up
less in each pulse due to the reduced heat capacity, therefore a damping is
observed. Combining both techniques is very interesting, because TrPV is
more accurate for longer time delays, while the CW-PM is more accurate
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Figure 7.4: MATBG vs. BLG pn-junction response under light illu-
mination. a, Schematic showing a MATBG device equipped with split gates.
b, Comparison of the cooling dynamics (measured as photovoltage) of a Bernal
bilayer sample (0°) and a close to magic angle sample (1.24°) at T = 25 K. Fig-
ure adapted from [72].

for very short delays (since it works in the frequency domain).

The main experiments are done comparing Device A with a non-twisted
Bernal bilayer graphene (BLG) sample. Both experiments show a much
faster cooling in the MATBG at low T (down to 5 K) as shown in Fig.
7.4. In the BLG sample the cooling time is reduced from 3 to 25 ps when
going from 300 to 5 K, as is expected due to reduced phonon occupation at
low T [174, 175]. However, the MATBG samples shows an almost constant
response in the 3 ps regime (see Fig. 7.5a), which suggest the involvement of
low energy phonons which are still occupied at low T . Such phonons could
be induced by the breaking of the phonon dispersion into minibands due to
the moiré superlattice [176].

In order to better understand the origin of the ultrafast cooling, the spot
size, laser power and filling factors are varied (see Fig. 7.5b-d).

� The first test is whether the cooling could be happening via a diffusive
cooling mechanism [169, 177]. Such diffusive cooling would show in-
creasing cooling times for larger laser spot sizes and an increase of the
cooling times with lowering T . In the experiments, the MATBG has
no dependence on the laser spot size, while the BLG sample has a clear
spot size dependence, pointing towards a diffusive cooling mechanism
(Fig. 7.5c). This observation that cooling in MATBG is independent
of lattice temperature implies that a more efficient mechanism than
diffusive cooling is responsible for the cooling dynamics.

� Next, we check whether the cooling depends on the initial T of the
electrons. A higher laser power equates to having a higher initial
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7.2 Ultrafast Umklapp-assisted electron-phonon cooling
in MATBG

electron temperature, such that there is more population in the higher
energy bands, the dispersive bands in the case of MATBG. In BLG it
has been seen how higher power ends up giving slower cooling times,
due to bottlenecks of acoustic and optical phonons limiting the cooling
process [178]. However the cooling times in MATBG are rather non-
dependent on the power, meaning that the limiting factors found in
BLG do not apply to it (Fig. 7.5b). The faster cooling rate in MATBG
and its independence on electron T means that a different mechanism
is dominating the cooling, compared to the known mechanisms found
in non-twisted graphene.

� Finally, the cooling in MATBG is measured across the whole band to
explore the effect of the superlattice (Fig. 7.5d). The MATBG shows
an almost constant cooling time of 3 ps across the entire flat band
which experiences a large increase around the full filling of the band,
at ν = ±4. Such an increase indicates how the moiré pattern and
its low energy phonons are crucial to explain the ultrafast cooling in
MATBG.

7.2.1 Discussion

To better understand the origin of the ultra-fast cooling, the microscopic
electron-phonon scattering processes are studied in a four-band model con-
sisting of two nearly-flat and two dispersive bands. The model considers two
main types of scattering processes: intraband and interband. It is shown
(see [72] for details) how when considering Umklapp and normal scattering
contributions, electron-phonon Umklapp scattering consistently dominates
at the low T regime of interest (T < 10 K). Furthermore, the calculated
Umklapp-assisted cooling times as a function of filling factor are in agree-
ment with the experimental results.

The appearance of this novel Umklapp scattering mechanism relies on the
moiré pattern of the superlattice in the twisted graphene. That is because
in order for this Umklapp scattering to occur, it requires a small superlattice
Brillouin zone, spatially-compressed Wannier orbitals and low energy moiré
phonons. The fact that electron-phonon Umklapp scattering dominates the
ultrafast electron-phonon cooling, can help understand better the MATBG
physics, since electron-phonon scattering plays an important role in charge
transport. Understanding this mechanism could help understand some of
the open question in MATBG field such as the strange metal phase or the
role of phonons in the superconductivity.
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Figure 7.5: Optical measurements of the MATBG pn junctions. a,
Cooling time as a function of lattice temperature. In MATBG (1.24°in blue
and 1.06°, in yellow), the cooling time is constant between 5 K and 300 K (3
ps, blue line). For BLG (0°, red circles), it is greater at lower temperatures. b,
Dependence of cooling time on peak power density for BLG (red circles) and
MATBG (blue pluses, device A). The filled (open) shapes are measured using
the TrPV (CW-PM) technique. The error bars signify the one sigma confidence
interval from the fitting algorithm. c, Laser spot size dependence of the cooling
time for the three devices. d, Gate dependence of cooling time of device A.
The inset shows the increasing cooling time with power density at full filling
of the band for device B. The thick blue line in all the figures represents the
cooling time obtained from the-low temperature model of Umklapp-assisted
cooling. Figure adapted from [72].
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8 Conclusions and outlook

In this thesis, we have developed gate-defined JJs in MATBG by taking
advantage of its rich phase space and using all van der Waals materials. We
have found that the MATBG JJs offer great tunability with carrier density.
We have shown how small changes in gate voltage allows to tune from a
conventional JJ to a highly unconventional one, showing broken inversion
and time reversal symmetries. This tunability can offer a large potential
to develop superconducting circuits, in which different components could be
made of a single material. Furthermore, by changing the conditions of the
device (namely T and gate voltage) we can even create completely different
types of devices, such as a pn-junction.

In Ch. 3 and 4 we successfully developed and optimized the recipes to fabri-
cate high quality MATBG gate-defined JJs. We found some key parameters
which improve the fabrication of the devices. These include, for example,
the use of thin hBN (< 15 nm) during the stacking or the “clamping” of the
graphene layers. In the case of double-graphite-gated junction devices, we
have also showed the importance of the relative sizes between the hBN and
graphene, as well as, the relative widths between the top and bottom gates.

Then, in Ch. 5 we explored the behavior and gate-tunability of the cre-
ated JJs. In Ch. 6 we focused on the case of having the weak link of the
junction close to the correlated state at ν = −2 filling factor, showing a
symmetry-broken JJ with a highly unconventional behavior under the ap-
plication of magnetic field. We have observed a magnetic hysteresis, which
allows to have a magnetic JJ, as well as define a tunable superconducting
diode at zero-field. These results have let us conclude that this state has a
broken inversion and time-reversal symmetry, which helps to frame its possi-
ble ground states. Furthermore this result suggests the potential of MATBG
for quantum technologies, as it allows to create complex JJs within a single
material. For example, the development of a tunable superconducting diode
at zero-field in a single material has great potential for low power electronics.

Finally, in Ch. 7, we showed how due to the richness of the MATBG sys-
tem and the way the junctions were made, it was possible to directly cre-
ate gate-defined pn-junctions. We have used the pn-junctions to study the
light-matter interaction of the system. By exploring the cooling dynamics
of the MATBG compared to Bernal bilayer graphene, we have found that
a new mechanism, namely electron-phonon Umklapp scattering, dominates
the cooling at low T (∼5 K). This mechanism is directly related to the moire
superlattice and it may help understand the role of phonons in the appear-
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ance of certain phases such as the strange metal or the superconductivity.

During the development of these thesis there have been similar experiments
exploring gate-defined structures in the MATBG system. While we were
working towards the fabrication of the JJs, Rodan-Legrain et al. [135]
and De Vries [179] et al. published the first results in gate-defined JJs
in MATBG. These works definitely proved the phase coherence of the su-
perconducting state and the possibility to create gate-defined devices in the
system. In the work of Rodan-Legrain et al. [135] they also showed how
the junctions could be used to perform tunneling spectroscopy of the SC
state or to create a quantum dot, showing the large tunability of the sys-
tem. However, none of these works thoroughly studied the proximity effect
on the correlated insulating states.

Other gate-defined experiments which have been made in these years are
the measurement of a gate-defined SQUID [180] and measurements of Little-
Parks effect in a gated ring architecture [181]. Both of these experiments had
the goal to directly study the superconducting state and managed to prove
long phase coherence lengths (reaching several µm [181]) of the electrons in
the MATBG system. However, they also showed the complexity that arises
in interpreting these complex gate-defined devices, as the size and exact
states in the weak link are dependent on the gating structure (as we also
showed in Fig. 5.6). Finally, all of these works have used Au electrodes
to define the junctions, leaving our approach the only graphite gate-defined
junctions in MATBG so far.

Apart from the gate-defined experiments, in the past few years the twisted
graphene field has undergone an incredible growth, both on the experimental
and theoretical side. In particular, superconductivity has not only been
discovered in a wider twisted graphene family, including twisted trilayer
(MATTG), quatrilayer (MATQG) and pentalayer graphene (MATPG) [182,
183, 184, 185, 186]. but also in non-moiré systems like ABC rhombohedral
[99] and even regular Bernal bilayer graphene [187, 188].

Despite all these developments, the underlying mechanisms governing the
SC state in the graphene family remain elusive. While scanning tunneling
microscopy (STM) experiments have suggested an unconventional supercon-
ducting state in TBG [189] and TTG [190], and there are several theories
proposing different scenarios [191, 192], no consensus has been reached yet.
The emergence of superconductivity in non-moiré systems, reopens the ques-
tion of which is the main parameter responsible for it. The common charac-
teristic between these materials, apart from their carbon composition, is the
presence of flatbands. Consequently, there is a growing interest in under-
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standing the superconductivity within the flatband regime [193, 194, 195].
This interest, is further emphasized due to the presence of flatbands at the
Fermi level in other twisted vdW materials, which might also host supercon-
ducting states [196]. Although here we focus mostly on the superconduc-
tivity, the same applies for the other correlated states in MATBG, whose
ground states and origin is still under debate. Finally, the recently developed
quantum twisting microscope (QTM) [197], which allows to in-situ change
the twist angle between the layers of 2D materials, may play a key role in
the understanding of twisted systems in the following years.

8.1 JJs follow-up

One of the realizations during this thesis was that making the JJs was not
only a tool which could be used towards understanding the superconductor,
but that it could also be used to study the other correlated states. Although
we only measured the state at ν = −2, in principle one could study all the
other CI states, such as the magnetic states found at ν = +1, +3. A lim-
itation we found with the gate-defined architecture, was the growth of the
junction size as the difference in the carrier density between the junction
and electrodes (|nJ − n|) increases. This, combined with the appearance of
small regions with different states inside the junction, diminishes the prox-
imity effect (Fig. 5.6). This effect is detrimental to measure the correlated
insulator states far from the superconducting state. A solution to this issue
could be to use another s-wave SC to create the junctions. In that case, the
superconductivity would be originating from the deposited electrodes and
the gate would only change the carrier density of the junction nJ .

Within this same context, simply understanding the interface between the
s-wave SC and the MATBG SC, could also be quite interesting as there
are yet not many studies on the interface between 2D and 3D superconduc-
tors [198]. Understanding this interface would be a necessary step for some
key experiments, those which would aim to measure the order parameter.
Measuring the order parameter of the MATBG SC would be one of the key
milestones to better understand the origin of its SC [192]. Knowing the
symmetries of the order parameter, both in magnitude and phase, can put
boundaries into the electrons involved in the formation of the Cooper-pairs,
yielding light into the mechanisms responsible for the superconductivity.

The most promising architecture for such experiments is to measure a corner
junction [97] in which the unknown SC is contacted from different directions
with a known s-wave SC. However, these experiments might be extremely
complicated in the case of MATBG, due to the angle inhomogeneity intrinsic
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to the samples [116, 159]. In the order parameter experiments it is essential
that the direction of the tunneling is perfectly known. For example, in the
case of high-Tc SCs the experiments were performed along crystallographic
axis of a single crystal of the unknown material [96]. Although this does
not exclude the possibility of such experiments, it would mean that several
devices would be needed in order to have proper statistics of the measured
signatures. For these experiments, the QTM might be a valuable tool. It
could make easier some proposals to measure the order parameter, such as
the vertical JJs between two rotated MATBG devices proposed by Lake et
al.[192], which are extremely challenging to do in transport .

Finally, we propose some improvements on the graphite-gated devices. As
we found in this thesis, properly defining the junction area is a key param-
eter to have high quality JJs in the MATBG system. In the past few years,
an interesting technique to etch graphite has been developed: local anodic
oxidation lithography [199, 200]. In the anodic oxidation, the graphite is
electrochemically etched using a conductive atomic force microscope (AFM)
cantilever, obtaining features down to 50 nm width. It has been recently
shown, how using graphite gates shaped with local anodic oxidation can
further improve the quality of the graphene devices, compared to using dry
etching techniques [201]. Therefore, using the local anodic oxidation tech-
nique to create gate-defined JJs or other structures, may allow to observe
new physics that might be obscured by the fabrication process. At the same
time, the graphite flakes etched this way remain clean of residues and can be
easily picked up with a polymer stamp, thus easing the fabrication process.
Furthermore, the fact that the etched graphite is clean and can be easily
picked up with a stamp [201] would mean that it does not need to be the
top layer of the stack. This offers the interesting possibility of creating struc-
tures in which both the displacement field D and the carrier density n can
be tuned (semi-) independently even in a junction architecture. This is an
essential requirement in order to fabricate JJs in any of the other members of
the superconducting graphene family, since they all have a dependence with
D field. This opens up interesting avenues, since, for example, topological
JJs hosting Majorana fermions have been predicted to form in the case of
gate-defined bilayer graphene stabilized with WSe2 [202].

8.2 Final notes on vdW heterostructures

While the field of van der Waals materials and twistronics offers immense
opportunities to study new materials and their properties, the fabrication
of complex high-quality reproducible devices is still limiting the advance-
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ment of the field [203]. Although efforts are being made towards improving
the reliability in the fabrication, for example by the automatization of the
stacking process [204, 205] or developing assembly processes in high vacuum
for improving the cleanliness [206], a deeper understanding of the subtleties
of the stacking process is needed to progress further in that direction. The
thorough investigation and understanding of which parameters are key in
the fabrication process of high quality devices (as was the aim of the de-
tailed explanations of Ch. 3) is a necessary step towards the understanding
of which properties are intrinsic to the material or extrinsic from the fab-
rication process. This understanding could allow to eventually achieve a
standardization of devices. The advances in the stacking process would be a
great leap forwards in the investigation not only of MATBG, but of any other
complex heterostructures which might otherwise present large variability in
their phase diagrams. In this way, gaining full control over the fabrication
would provide the opportunity to explore and understand a, potentially,
infinite combination of materials.
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Superfluid weight and berezinskii-kosterlitz-thouless transition tem-
perature of twisted bilayer graphene. Physical Review B 101, 060505
(2020).

[194] Yu, J., Ciccarino, C. J., Bianco, R., Narang, P. & Bernevig, B. A.
Nontrivial quantum geometry and the strength of electron-phonon cou-
pling. Preprint: arXiv:2305.02340 (2023).

[195] Chen, S. A. & Law, K. T. Towards a ginzburg-landau theory
of the quantum geometric effect in superconductors. Preprint:
arXiv:2303.15504 (2023).

[196] Wang, L. et al. Correlated electronic phases in twisted bilayer transi-
tion metal dichalcogenides. Nature Materials 19, 861–866 (2020).

[197] Inbar, A. et al. The quantum twisting microscope. Nature 614, 682–
687 (2023).

[198] Sinko, M. R. et al. Superconducting contact and quantum interfer-
ence between two-dimensional van der waals and three-dimensional
conventional superconductors. Physical Review Materials 5, 014001
(2021).

[199] Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & MacHida, T.
Fabrication of graphene nanoribbon by local anodic oxidation lithogra-
phy using atomic force microscope. Applied Physics Letters 94 (2009).

[200] Weng, L., Zhang, L., Chen, Y. P. & Rokhinson, L. P. Atomic force mi-
croscope local oxidation nanolithography of graphene. Applied Physics
Letters 93, 93107 (2008).

[201] Cohen, L. A. et al. Universal chiral luttinger liquid behavior in a
graphene fractional quantum hall point contact. Science 382, 542–
547 (2023).

[202] Xie, Y.-M., Étienne Lantagne-Hurtubise, Young, A. F., Nadj-Perge,

131



References

S. & Alicea, J. Gate-defined topological josephson junctions in bernal
bilayer graphene. Physical Review Letters 131 (2023).

[203] Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility
in the fabrication and physics of moiré materials. Nature 602, 41–50
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