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Reproducible superconducting contacts to graphene-based heterostructures

1 Introduction

After Andre Geim and Konstantin Novoselov discovered graphene in 2004 [1], the two-
dimensional physics experienced exponential growth. An abundance of various monolayer
materials, with physical properties significantly different from those of their bulk origin,
was predicted and synthesized. Soon after, people realized that if vertically assembled, the
resulting structure might obtain unexpected properties distinct from the separate layers.
As a result, the vertical assembly created a unique platform for the discovery of a limitless
range of 2D material combinations. The field evolved once more when people realized
that the materials could be assembled with rotation angles relative to each other. This
additional degree of freedom in the fabrication process resulted in the discovery of systems
supporting several unique phenomena: correlated insulators, magnetism, unconventional
superconductivity, anomalous quantum Hall effect, and strange metal states. The nature
of many of these phenomena is yet to be fully understood.

One promising experimental platform that could shed light on the nature of these
phases are Josephson junctions, where the induced superconductivity is affected by the
intrinsic state of the 2D material. In the special case of bilayer graphene rotated by 1.1◦

relative to each other, for example, the properties of the intrinsic superconductivity could
be explored by creating Josephson junctions with different orientations.

To implement such an experimental system, a good-quality contact between super-
conducting leads and the 2D material is needed. The main goal of this master’s thesis was
to develop a reliable fabrication recipe for superconducting MoRe contacts in graphene-
based heterostructures. After accomplishing this goal, this recipe was used to fabricate
and characterize Josephson junctions based on monolayer graphene encapsulated with
hBN.

The thesis is structured as follows: the first chapter provides a theoretical overview
of superconductivity and graphene physics. The second chapter describes the fabrication
techniques used to manufacture the graphene-based devices, including the developed sput-
tering recipe for MoRe deposition. The third chapter presents the analysis of Josephson
junction devices made from both aligned and non-aligned graphene-hBN heterostruc-
tures.
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2 Theoretical Background

2.1 Superconductivity and Josephson Junction

2.1.1 Superconductivity

Superconductivity is a phenomenon first observed in 1911 by H. Kamerlingh Onnes[2],
which refers to the complete disappearance of electrical resistance in certain materials be-
low a critical temperature, Tc. Later, it was found by Meissner and Ochsenfeld that these
materials also behave like perfect diamagnets[3], almost completely excluding magnetic
flux from the interior of a superconductor. The magnetic field penetrates the supercon-
ductor only on the scale of the penetration length λL. [4]. These two discoveries imply
that the superconductor will retain its properties as long as it is not warmed above the
critical temperature Tc, the current does not exceed its critical value Ic, or it is not exposed
to a magnetic field higher than the critical field.

The most successful theory describing this phenomenon is the Bardeen-Cooper-
Schrieffer (BCS) theory[5]. According to this theory, in the presence of the Fermi sea,
even a small attractive force between electrons (such as one caused by electron-phonon
interaction) causes two electrons with opposite spin and momentum to form a bound
state called a Cooper pair, which has a spatial length on the order of ξ0. Notably, be-
cause paired electrons obey bosonic statistics, they form a condensate defined by a global
wavefunction ψ ∼ |ψ|eiϕ shared by all pairs of electrons, preserving phase coherence over
significant distances.

The bound energy of a Cooper pair, ∆, leads to the formation of an energy gap
Eg = 2∆, which is the minimum amount of energy required to break a Cooper pair. The
theory predicts the value of the energy gap and coherence length as:

∆ ≈ 1.764kBTc (1)

ξ0 =
h̄vF
π∆

(2)

where vF is the Fermi velocity, Tc is the critical temperature, h̄ is the Plank constant,
and kB is the Boltzmann constant.

Seven years before the BCS theory, another functional theory focusing purely on
the phenomenological aspect of superconductivity was developed. The Ginzburg-Landau
theory [6] expresses free energy in terms of a complex wavefunction, which acts as an
order parameter within a second-order phase transition. The theory also introduces the
Ginzburg-Landau coherence length ξ as a measure of characteristic length.

ξ =
h̄

|2m∗α(T )|1/2
(3)
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Figure 1: a: Superconductivity phase diagram as a function of current, magnetic field,
and temperature. b: Magnetic field penetration behavior of type I and type II supercon-
ductors.

.

The two characteristic lengths presented by the theories, ξ0 and ξ, though different
yet related, are approximately equal to each other at temperatures significantly below Tc.
They play important roles in describing key features of superconductivity.

Firstly, as proposed by Abrikosov in 1957[7], the behavior of a superconductor
strongly changes with the change of a GL parameter κ = λL/ξ. For materials with
0 < κ < 1/

√
2 (type I superconductors), a discontinuous collapse of superconductivity at

some critical field Hc is expected. For materials with κ > 1/
√
2 (type II superconduc-

tors), a continuous phase transition occurs. At some lower critical field Hc1, a continuous
increase in flux penetration begins, reaching its maximum value B at the upper critical
field Hc2. Between Hc1 and Hc2, the magnetic field penetrates the superconductor with
supercurrent vortices carrying a magnetic flux quantum:

Φ0 =
hc

2e
≈ 2.07× 10−15Wb (4)

which makes type II superconductors not perfect diamagnets.

Secondly, ξ is crucial in describing the behavior of Cooper pairs at a superconductor/non-
superconductor interface. In this case, superconductivity infiltrates the non-superconductor
with its wave function amplitude exponentially decaying as the distance from the inter-
face increases. This phenomenon is known as the proximity effect and is used for the
formation of Josephson junctions, discussed in the upcoming section.

The BCS theory successfully describes the behavior of many superconductors. How-
ever, it fails to fully explain the superconducting properties of certain materials, thus called
unconventional superconductors. Among these, there are several types of superconductors
of high interest due to their high critical temperature(such as cuprates, iron-based super-
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Figure 2: (a): Scheme of a junction geometry. A dashed line marks a contour for inte-
gration discussed in the main text. (b): Current distribution in a Josephson junction at
a magnetic field Φ = 2Φ0.Figures are adapted from [4]

conductors, etc.)[8–12]. Despite research providing some insight into the nature of these
superconductors, such as anisotropic wavefunctions[13–18], a comprehensive theoretical
model is yet to be achieved.

2.1.2 Josephson Junction

A Josephson junction(JJ) [19] is a device composed of two superconductors separated by
a non-superconducting material called a weak link. Due to the proximity effect, the super-
current can pass through the weak link even at zero voltage while the two superconductors
preserve their global wavefunctions ψ1 ∼ |ψ1|eiϕ1and ψ2 ∼ |ψ2|eiϕ2 . The Josephson effect
is described by two Josephson equations. The first equation:

I(ϕ) = Ic sinϕ (5)

where ϕ is the difference in the phase of the wavefunctions of the two electrodes,
and Ic is the maximum supercurrent that the junction can conduct, describes the DC
Josephson effect.

The second equation:

dϕ

dt
=

2e

h̄
V. (6)

is called the AC Josephson effect. It implies that if there is a voltage difference V
across the junction, the phase difference changes accordingly, and the current alternates
with frequency f = 2eV

h
.
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Figure 3: Fraunhofer pattern for rectangular Josephson Junction. The value of critical
current is normalized.

One of the key features of the Josephson junction arises when the device is exposed
to an external magnetic field. When the junction is placed under a magnetic field per-
pendicular to the direction of the current flow, its value changes oscillatory.

Let us consider a rectangular junction in a coordinate system such that the electrode
surface is parallel to the xy plane and the current flows along the y direction. As the
global wavefunction of the superconductors has to remain single-valued, by taking the line
integral of the magnetic vector potential A (B = ∇×A) over the contour passing through
both superconductors and the weak link, one can show that the phase accumulation is
given by:

∆ϕ = 2π
Φ

Φ0

(7)

As the flux in the closed path is given by:

dΦ = Btdx (8)

where t = d+2λL, the local value of supercurrent at the Josephson junction, which is
given by Is = Ic sin (∆ϕ), then oscillates sinusoidally with position according to the phase
difference. The total current, which equals zero at each complete cycle, is often referred to
as Josephson vortices. For an arbitrary rectangular junction, the current flowing through
it at a given flux Φ is given by:

Im(B) = Ic(B = 0)

∣∣∣∣sin (πΦ/Φ0)

πΦ/Φ0

∣∣∣∣ (9)
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Figure 4: (a): The lattice structure of graphene. a and b are two primitive translation
vectors. τ1, τ2, τ3 are vectors from the B site to the nearest A sites. (b): The first Brillouin
zone. Figure a is adapted from [20]

This formula is similar to one for single-slit diffraction in optics and, hence, is usually
referred to as the Fraunhofer pattern. The application of Josephson junctions of different
geometries has shed light on the nature of high-Tc unconventional superconductors and
explored the anisotropy of their wavefunctions[13]. The main geometry used in this work
is a rectangular Josephson junction with a weak link made of graphene, the key physics
of which is discussed in the next chapter.

2.2 Graphene

2.2.1 Single layer graphene band structure

Graphene is a 2D crystal consisting of carbon atoms assembled into a hexagonal lattice.
The lattice structure of graphene and the first Brillouin zone are depicted in Fig. 4. The
unit cell includes two carbon atoms at A and B sites and is described by primitive lattice

vectors a = a(1, 0) and b = a
(
−1

2
,
√
3
2

)
, where a is the graphene lattice constant, which

approximately equals 0.246 nm[21]. The vectors from the A site to the three nearest B

sites are defined as τ 1 = a
(
0, 1√

3

)
, τ 2 = a

(
−1

2
,−

√
3
2

)
, and τ 3 = a

(
−1

2
,
√
3
2

)
.

Since each graphene atom possesses four valence electrons, three of which form tight
in-plane σ-bonds with neighboring atoms, leaving one electron in the 2Pz state, only the
latter is considered to play a role in conductivity due to its weaker π-bond. The reciprocal

lattice vectors are a∗ = 2π
a

(
1, 1√

3

)
and b∗ = 2π

a

(
0, 2√

3

)
. The Brillouin zone contains two

nonequivalent corners K = 2π
a

(
1
3
, 1√

3

)
and K ′ = 2π

a

(
0, 2√

3

)
.

Taking stated the above into account, we can estimate the low-energy band structure
of graphene by deriving an effective Hamiltonian within a tight-binding model for π-bond
electrons. In the model, the wavefunction can be written down in the following form:
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ψ(r) =
∑
RA

ψA (RA)ϕ (r−RA) +
∑
RB

ψB (RB)ϕ (r−RB) , (10)

where RA = naa + nbb + τ l and RB = naa + nbb are coordinates of A and B sites,
respectively. The Hamiltonian is given by

H = −γ0
∑
RA

3∑
l=1

|RA − τ l⟩ ⟨RA|+ h.c. , (11)

where γ0 is the transfer integral, and |R⟩ stands for the wavefunction at atomic site
R. The Schrödinger equation is then

εψA (RA) = −γ0
3∑

l=1

ψB (RA − τ l) (12)

εψB (RB) = −γ0
3∑

l=1

ψA (RB + τ l) . (13)

After applying the Bloch theorem the Schrödinger equation takes the form

(
0 h(k)

h(k)∗ 0

)(
fA(k)

fB(k)

)
= ε

(
fA(k)

fB(k)

)
(14)

h(k) = −γ0
3∑

l=1

exp (ik · τ l) (15)

with the eigenenergies

ε± = ±

√
1 + 4 cos(

akx
2

) cos(

√
3aky
2

) + 4 cos2(
akx
2

), (16)

where ε+ and ε− stand for energies in the conduction and valence bands. The equa-
tion represents a valence/conduction symmetric spectrum with the two bands touching
at K and K ′ points at zero energy. By examining the system in the vicinity of these two
points of interest, we approximate the energy dispersion relation up to a linear form:

ε± = ±h̄vF |k| (17)

where k is a wave vector measured from K and K ′, and vF is an effective Fermi
velocity vF =

√
3
2

aγ0
h̄
.

7
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The low-energy electronic states are expressed in terms of the K and K ′ points,
where wavefunctions are products of plane waves associated with K and K ′ and slowly
(compared to the atomic scale) varying envelope functions

ψA (RA) = eiK·RAFK
A (RA) + eiK

′·RAFK′

A (RA) (18)

ψB (RB) = −ωeiK·RBFK
B (RB) + eiK

′·RBFK′

B (RB) , (19)

where ω = exp (2πi/3) is added to simplify the final equations. After putting these
expressions at Schrodinger equations and using long-wave approximation we obtain

HKFK = εFK, HK′
FK′

= εFK′
, (20)

where

HK =

(
0 vp−
vp+ 0

)
, HK′

=

(
0 vp+
vp− 0

)
, (21)

FK =

(
FK
A (r)

FK
B (r)

)
, FK′

=

(
FK′
A (r)

FK′
B (r)

)
. (22)

The effective Hamiltonians HK and HK′ give the same eigenenergies:

HK = h̄vFk · σ, HK′ = h̄vFk · σ∗.

where p =
√
p2x + p2y. The effective Hamiltonians presented above are analogous to

the Dirac Hamiltonian for zero-mass particles, with linear dispersion occurring at the K
and K ′ points. Hence, graphene presents a valuable platform where one can investigate
the behavior of relativistic charge carriers, both electrons and holes, depending on the
applied electric field [22].

An important distinction, however, is that instead of real spin, graphene features a
valley pseudospin, originating from the equivalency of A and B points of the graphene
unit cell. Adding up the degeneracy of the real spin to the effect of valley pseudospin, we
have a total of 4-fold degeneracy for the graphene system.

2.2.2 Band gap formation in hexagonal lattice

Now, we will see what happens to the system when introducing asymmetry between A
and B sites. In this case, the Hamiltonian takes the following form:

HK =

(
∆ vp−
vp+ −∆

)
. (23)

8
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Figure 5: Dispersion relation for graphene. Figure taken from [23].

Now, the Hamiltonian transforms into the one equivalent to the representation of a
massive Dirac electron, where ∆ and −∆ terms in the matrix represent an opened energy
gap at the Dirac points. As the updated Hamiltonian is no longer invariant under the
coordinate inversion operation, one can conclude that the Dirac cones are protected by
C2 symmetry.

The presented explanation is important for understanding the nature of the Dirac
cone in graphene and presence of an energy gaps in other 2D materials, such as hexagonal
boron nitride (hBN), which has a hexagonal structure with Boron and Nitrogen atoms
on A and B sites, respectively. It also illustrates how hBN affects the graphene band
structure in layered systems [10].

2.2.3 hBN/graphene structures

The significant interest in hBN/graphene structures stemmed from the marked improve-
ment in graphene quality[24]. While graphene on SiO2 substrate devices allowed for the
first time to observe key features of graphene band structure[25], the overall quality of the
devices left a lot to be desired. Substrate roughness[26–28] and scattering from charged
surface states and impurities[29–32] were primary limiting factors. These issues led to a
significant reduction of carrier mobility away from the one predicted theoretically, and
the breakup of the 2D gas into a randomly distributed set of electron and hole pud-
dles near the charge neutrality point[31–33]. hBN encapsulation of graphene was found
to significantly reduce the influence of these effects on graphene structure, dramatically
improving the quality of the devices[24]. However, the influence of hBN is not limited
just to preserving the pure physical properties of graphene when one starts to consider
hBN/graphene systems with aligned lattices.

When two periodic 2D structures are overlaid with a twist angle or lattice mismatch,
a periodic pattern called a moiré lattice emerges[34]. The periodicity of the moiré pattern
for the graphene/hBN structure is characterized by the moiré wavelength λm:

9
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Figure 6: a: Sketch of graphene/hBN structure emerging moire pattern. b: Dispersion
relation for graphene aligned to hBN. Figure a taken from [39]. Figure b taken from [38].

λm =
(1 + δ)a√

2(1 + δ)(1− cos θ) + δ2
(24)

where a is the graphene lattice constant, δ is the lattice mismatch between hBN and
graphene, and θ is the twist angle. The effect of the moiré superpotential on the graphene
electronic properties can be divided into two components.

Firstly, the moiré superlattice acts on graphene as a weak periodic potential, resulting
in the formation of a new set of Dirac points at energies determined by the wavelength of
the moiré pattern and hence the rotation angle[35, 36].

Secondly, the increased periodicity in the system significantly alters its behavior
under a magnetic field. When a 2D system experiences both a periodic potential and
a magnetic field, a recursive energy spectrum, known as the Hofstadter butterfly, can
emerge [37, 38]. This effect arises from the interaction between two quantized phenom-
ena: Landau levels generated by the magnetic field and Bloch bands induced by the
periodic potential. However, the phenomenon becomes observable only when these two
effects occur on a comparable scale. For conventional lattice sizes under one nanometer,
extremely large magnetic fields are typically required, making the Hofstadter butterfly
challenging to detect. Graphene-based moiré systems are highly effective for observing
the phenomenon[39, 40].

10
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3 Experimental Methods

3.1 Fabrication

Fabrication of van der Waals structures with one-dimensional contacts includes the fol-
lowing steps:

1. Exfoliation

We mechanically peel off thin layers of the desired material from the bulk crystal and
attach them to a SiO2 wafer. After that, we examine the wafer with a microscope
to select flakes applicable for the next fabrication steps.

2. Stamp

To be able to pick up the flakes of interest we manufacture a stamp consisting of
PC and PDMS on the glass stripe.

3. Stacking

We use the fabricated stamp to consequently pick up flakes and construct the van
der Waals structure. The completed structure is then transferred from the stamp
to a chip with pre-patterned electrodes.

4. Lithography and contact deposition

Finally, we get a complete device after shaping the stack to a certain form using e-
beam lithography and attaching one-dimensional contacts by sputtering conducting
material.

The process of fabrication used in this work was developed and improved throughout
years of research. Starting with the first experimentally achieved thin flakes of graphene
and finishing with the development of 1D contact to hBN-encapsulated graphene[24]. For
exfoliation, stamp manufacturing, and stacking there were used techniques developed in
the[41–44] . In the course of the work on this master thesis project, a significant amount of
time was spent developing a recipe for the deposition of a contact material, molybdenum-
rhenium (MoRe), on the sample. A detailed description of the fabrication process, in-
cluding the development of the sputtering recipe, is provided in the chapter.

3.1.1 Exfoliation

The main idea of the exfoliation process widely used nowadays was presented by Geim
and Novoselov in 2004 [1]. As the van der Waals force between layers of material is much
weaker than chemical bonding, the layers can be detached from one another by use of
scotch tape. The process of exfoliation of graphene is the following:

1. We cut a 290 nm thick wafer of SiO2 into chips of 1 x 1 cm with a diamond cutter.
Afterward, we clean the chips with Nitrogen gun to get rid of dust and other physical
contaminations and expose them to O2 plasma to increase adhesion between the
SiO2 surface and graphene flakes. For the plasma cleaning, we use O2 flow of 50
sccm at power of 25 W. The appropriate duration of the process resulting in good

11
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adhesion is usually from 30 to 60 seconds. Stronger attachment of graphene to the
chip may lead to difficulties when trying to pick up the flake from the chip.

2. After that, we take a piece of scotch tape and attach small pieces of bulk crystals
to it. Then we fold the piece of scotch tape to thin the material and spread it over
a bigger area of the tape. We try to spread the graphene over the surface of the
scotch tape with the least amount of folds limiting the number to 5-7 folds. This
ensures that the graphite flakes are not severely contaminated with residues of the
scotch substrate.

3. We place SiO2 chips on the scotch tape. To increase the probability of finding good
graphene flakes we choose regions on the scotch tape densely covered with mate
crystals. The shiny color indicates thicker bulk pieces of graphite. Then we stick
the scotch tape with chips attached to it on a glass substrate.

4. We put pressure on the chips manually to increase the adhesion for the flakes and
remove air bubbles from the scotch/chip interface if any.

5. After we pressed on the chips for 1-2 minutes we put the scotch tape on a heater of
110◦C for 2 minutes.

6. Finally, we can peel the scotch tape off the chips. We need to peel the tape very
slowly to ensure that the flakes will not detach from the chip.

The process described above is suitable for exfoliating single-layer graphene flakes.
For exfoliating hBN flakes, we use the same approach with few significant differences. For
placement of the SiO2 chip, we look for a rainbowish color on the scotch tape. To pressure
the chips, we apply a much weaker force and heat them for a shorter time (approximately
1 minute).

3.1.2 Flake search

After exfoliation is done, we look for the flakes which we will use to stack a device. To find
a good graphene flake, we use an optical microscope. Absorption of monolayer graphene
is 2, 3%, and it increases linearly with increasing number of layers. It has been shown
experimentally that graphene is most visible on 290 nm SiO2 substrate [43, 45, 46]. If
placed on it, single-layer graphene is visually distinct from few-layer graphene. Generally,
we are looking for flakes of monolayer graphene free of scotch residues and not containing
areas of thicker graphite flakes. The size of the flake should not exceed 30µm. The use of
flakes having the features described above might cause problems during stacking. Residues
on the graphene flake will result in an air bubble between graphene and hBN and most
probably affect graphene characteristics. Big flakes or flakes with graphite areas are hard
to pick up. During the pick-up process, this can result in ripping off the graphene and
its folding. In the Fig. 7, there are examples of graphene flakes that are considered useful
and not useful for stacking.

For a search of appropriate hBN flakes, we have a different approach. We use hBN
flakes of thickness 10-20 nm. Flakes of such thickness are flexible and robust enough for
the stacking process and are relatively easy to detect with a microscope. The color of

12
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Figure 7: Optical images of graphene flakes. (a) - (c): Images of the flakes not preferable
for use. Flakes (a) and (b) are attached to much thicker layers of graphite, while (c) has
some residues on it. (d) - (f): Images of flakes considered good for stacking. Scale bar in
all the images is 50µm.

the flake visible through the microscope strongly depends on the thickness of the flake,
starting from light blue for very thin hBN, going to dark blue and green colors for flakes
of medium thickness, and finishing with yellow color for extremely thick flakes. Although
one can guess the thickness of a certain flake by the color (e.g., for our purposes, we
look for cyan blue flakes), to measure the thickness precisely, AFM scanning of the flake
is usually done. As for graphene, we avoid flakes containing different residues. We also
aim to use flakes without any cracks on them and of the same thickness throughout the
whole flake area. As the color of the flake changes gradually with thickness, some changes
in the number of layers in a frame of one flake are sometimes hard to detect. For this
reason, observing the flakes with reduced aperture is useful. In the Fig. 8b and Fig. 8c,
the same flake is seen through a microscope in different aperture settings. Despite in the
wide aperture the flake looks homogeneous, in the narrow aperture different regions with
different numbers of layers are visible.

To stack a device with a specific alignment of two different layers of material rela-
tively to each other, one has to have a clue about their initial lattice misalignment. For
bilayer graphene devices the issue is usually solved by taking one big flake of graphene
and cutting it with AFM tip or laser. The two pieces of graphene have primitive transla-
tion vectors aligned parallelly. Later, during stacking, the flakes can be rotated relatively
to each other on the angle of choice (for example, on magic angle ∼ 1.1◦). In the case
when we want to align hBN and graphene flakes, a different approach is needed. For this
purpose, we look for flakes with clear straight edges and a certain angle between them
(30◦, 60◦, 90◦, 120◦, 150◦). As both hBN and graphene have the same hexagonal crystal-
lographic structure except for the slight natural lattice constant difference (∼ 1.8%), the
configuration with such angles between two straight edges signifies the existence of zigzag
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Figure 8: Optical images of hBN flakes. (a) - (c): Images of the flakes not preferable for
use. Images (b) and (c) correspond to the same flake, but the image is taken at different
apperture settings. (d) - (f): Images of flakes considered good for stacking. Scale bar in
all the images is 50µm.

and the armchair edges. Using that information, one can stack an aligned sample by
aligning the straight edges of graphene and hBN.

Once a set of good flakes is determined, we proceed to the next step of fabrica-
tion.

3.1.3 Stamp preparation

A stamp is a set of transparent sticky polymers placed on a glass slide. The polymers for
the stamps used in this work are polycarbonate(PC) and polydimethylsiloxane(PDMS).
For the stamp fabrication, we use commercially available PDMS of thickness ∼ 1mm. To
create a layer of PC we spill a few drops of 5% PC solution on a clean glass slide, place
another one on top, and slide them in opposite directions. Afterward, the two slides with
a thin layer of PC on them are put on a hot plate of 90◦C − 100◦C for 5 minutes. The
process of fabricating the PC slides is complete. Now we have to visually check their
quality. A good PC slide has no wrinkles and is fully transparent without any rainbowish
colors on it. Once we have thin PC films, we can start fabrication of the stamp.

1. We stick a piece of scotch tape to a clean glass slide and cut out a small square of
1 x 1 cm.

2. Cut out a small square of PDMS (0.5 x 0.5 cm), remove the plastic cover, and place
it on another glass slide ∼ 0.5cm from the edges.

3. Take one of the slides with PC and cut out a small region (but bigger than a square
we cut in the scotch tape) of PC film with a sharp knife avoiding curling and folding
of the PC film.
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Figure 9: Exfoliation process. (a): Picture of a stamp. (b): Scotch tape covered with
graphene crystals. (c): Scotch tape covered with hBN crystals.

4. Take a scotch tape with a square hole, place it on the region of the PC film, and
slowly peel it off. We should obtain a free area of PC film suspended by the scotch
tape.

5. We stick the tape to the glass slide with PDMS on it, such that the free region of
the PC covers the PDMS.

The stamp now is complete. Now we make sure that the PC/PDMS surface is free
of air bubbles and inhomogeneities and proceed to the stacking process.

3.1.4 Stacking

The stacking process is done on a transfer stage which allows the assembly of different 2D
layers controlling the relative angle between them. The transfer stage is shown in Fig. 10.
Its main components are as follows:

1. Vibration reduction stage

2. Sample stage, which consists of the following parts:

(a) Sample plate. It contains a heater and a temperature sensor to control the
temperature of the sample. In the center of the plate, there is a vacuum hole
for fixing the position of the substrates with flakes.

(b) Coarse and fine screws for rotating the stage.

3. The stage position manipulator for moving the stage in X-Y directions.

4. Stamp holder. It consists of the following parts:

(a) The stamp leg. It contains two vacuum lines to attach the glass slide with a
stamp to the leg and to attach the leg to the rest of the stamp holder.

(b) Screws to move the stamp holder in X and Y directions.
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Figure 10: Transfer stage. (a): zoomed in picture of the sample stage and stamp holder.
(b): the full picture of the transfer stage set-up. Red dashed lines indicate the sample
stage and stamp holder shown in (a).

(c) Screw to move the stamp holder in Z direction.

(d) Screw to manipulate the angle of the stamp leg relatively to the sample stage.

5. Knobs to turn on and off vacuum for sample stage and stamp stage.

6. Microscope with different far-field lenses of magnification 5X, 10X, 20X, and 50X.

7. Focusing knob

8. Eye-piece

9. Digital camera connected to PC

10. Fan for fast cooling of the transfer stage

The process of stacking on the transfer stage is the following:

1. We select a graphene flake and two hBN flakes for the top and bottom layers. The
hBN flakes should be bigger than the graphene flake to encapsulate it fully.

2. Then we place a chip with the top hBN layer on the transfer stage and turn on the
transfer stage vacuum by turning the according knob.

3. We attach the stamp to the stamp leg and turn on two vacuum lines for the stamp
holder. With the screws, we tilt the stamp for a small angle. With screws and
manipulators, we locate the PDMS area and the chip underneath the lenses of the
microscope. By changing the focus of the microscope we first focus on the surface
of PC to find a clean area on it to locate it in the center of the objective. Then we
find a chosen hBN flake on the chip and locate it in the center as well.

4. After that, we set the temperature of the sample stage to 110◦C and slowly bring the
stamp down with the according screws. When the temperature of the sample stage
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Figure 11: (a): Image of the stack on the pre-patched chip. White dashed line indicates
the region where AFM image shown in (b) was done. The scale bar is 25µm. (b): The
black and yellow dashed lines indicate the borders of the top and the bottom hBN flakes
respectively. The scale bar is 5µm.

reaches 110◦C, we can make contact between the chip and the stamp. As the stamp
is slightly tilted, the contact first will occur at the edge of the stamp. The area
where the stamp and the chip touch will be shown as a “wavefront” propagating
along the chip as we slowly bring the stamp lower and lower.

5. We accurately control the Z position of the stamp, letting the wavefront gradually
and slowly go through the chip until it fully covers the flake of interest. At this
point, it is important not to allow the wavefront to make abrupt jumps. Slow and
gradual movement of the wavefront will ensure that we don’t fold or crack the flake.

6. After the wavefront completely covers the flake, we wait for 2-3 minutes and slowly
lift the stamp allowing the wavefront to slowly go backward.

7. After we ensure no contact between the stamp and the chip, we replace it with a
chip with the graphene flake on it. We repeat the process of attaching the flake to
the stamp. Now, we ensure that the graphene flake is fully covered with the top
hBN flake. If needed, we can rotate the sample stage with the screws.

8. After the graphene flake is picked up, we once again lift the stamp and replace
the chip with the one with the bottom hBN flake on it. We once again repeat the
procedure ensuring that the bottom hBN flake fully covers the graphene flake as
well.

9. Next, we change the chip for the pre-patterned substrate with electrical contacts on
it. With the microscope, we look for the location on the chip where we want to fit
our sample and place it below the sample.

10. Once again, we slowly make contact between the stamp and the chip. After that,
we set the temperature of the sample stage to 180◦C. As the temperature slowly
increases, at around 140◦C− 150◦C, the PC will start to melt. On the microscope,
one can see the PC detaching from the PDMS surface. Once the temperature reaches
170-180 degrees, we can fully lift the stamp up, leaving the sample on the chip.

11. We turn off the heating and let the chip cool down for several minutes. After that
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Figure 12: (a) - (f): Process of vertical assembly of hBN encapsulated single layer
graphene. The black and yellow dashed lines indicate the top and the bottom hBN
layers respectively. The red dashed line indicates the graphene flake. Green area shows
PC wavefront spreading through the surface. Scale bar in all the images is 50µm.

we clean the chip from the PC residues by putting it in dichloromethane (DCM) for
5 minutes and IPA for 2 minutes.

After the stacking is complete, we switch to the lithography process to shape the
stack into a certain geometry with reactive-ion etching and make electric contacts via
sputtering.

3.2 E-beam lithography

The next step of fabrication is creating a photoresist mask which we expose to e-beam
lithography. Next, we etch the chip in the reactive ion etcher (RIE) and clean the chip
from the photoresist. To make electric contacts we once again repeat the procedure but
sputter electric contacts right after etching.

1. We start the process by creating the design of the sample in KLayout. Here we
define the shape of the future JJs.

2. Then we create a photoresist mask by spincoating PMMA 950K in a spincoater at
6000 rpm for 40 seconds with the following baking at 150◦C for 2 minutes. This will
give a layer of PMMA of approximately 300nm.

3. After that, we do e-beam lithography. For such thickness of PMMA and device sizes
we use step of 8nm, and area dose of 100µC/cm2.
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Figure 13: (a) - (f): Images of the stack during fabrication process. Scale bar in all the
images is 50µm.

3.3 Photoresist development and etching

1. We develop the photoresist in a solution of IPA and DIW (7:3) at room temperature
for 1 minute 20 seconds. After that, we proceed to etching at RIE with a combination
of gases CHF3 and O2 (the flow rate is 40 and 4 sccm respectively) at generator
power 20W. The procedure is done when all hBN and graphene in the exposed area
is completely etched.

2. After that, we design the electric contacts to the graphene in Klayout to do spin-
coating and e-beam lithography once again. The electric contact design should not
contain sharp corners or abrupt curves. Such design features cause the formation of
cracks and wrinkles on the surface of the conducting material. As the characteris-
tic scale for our samples reaches 0.25µm the formed inhomogeneities are enough to
strongly affect the sample (e.g., short the neighboring contacts).

3. Now we proceed to etching. The etching recipe described above yields the etching
rate for hBN 19nm/s and 1.6nm/s for graphene. Such a relation of etching rates is
considered good for the quality of 1D contacts to graphene. Knowing the thickness
of the top and bottom hBN, we estimate the duration of etching required to etch
through the flakes.

After the etching is done, we immediately take the sample and put it into the vacuum
chamber for the following sputtering. This is done to minimize the exposure of the clean
1D graphene surface to the air.
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Figure 14: (a): Picture of the sputtering system. (b): Schematic diagram illustrating the
concept of the sputtering process. Figure b taken from [47].

3.4 Sputtering and recipe development

Sputtering is a process of depositing thin films. The process is described in Fig. 14b.
Plasma gas (in our case Ar) is ignited and accelerated by a DC power supply to collide
with the surface of a target material and detach particles from it. Afterwards, the particles
homogeniously cover the substrate. The properties of the deposited thin films (such
as superconductivity, resistance, Tc, and film thickness) strongly depend on how the
sputtering is done. In our case, requirements for good quality contacts to graphene,
preservation of high Tc, homogeneity of the MoRe film, and precise geometry of contacts
after lift-off caused a challenge in finding the right settings for the sputtering process. The
main issues faced along the way and the algorithm used to solve them will be described
below.

The sputtering occurs in the sputtering machine “Von Ardenne LS 320 S” (Fig. 14a).
The vacuum chamber capable of vacuums below 10−6mbar contains a target carousel with
6 sample positions, 1 DC generator, and 2 RF sources. Argon is injected into the chamber.
The flow of Argon is measured with a sensor located in the chamber and can be controlled
through a PID loop. The substrate is placed on a sample holder, which in turn is placed in
the lower part of the chamber, which is separated from the target holders with a rotating
shutter. The sample holder consists of a heating element and thermopair for controlling
the sample temperature during the sputtering process. The signal from the thermopair
is used to adjust the voltage applied to the heater with the PID loop. The temperature
of the sample and the voltage applied to the heater can be seen and controlled through
the software. The setup allows the user to set up the temperature of the sample as well
as the rates at which the sample is heated and cooled. An example of the change in the
temperature of the sample and the voltage applied to the heater during the sputtering
process is shown in Fig. 15. As the outcome, we have the following parameters we can
tune and control for achieving the film of desired properties: DC voltage, the temperature
of the sample holder, Ar flow rate, and the duration time of sputtering.

The most frequent problem met throughout the recipe development for the desired
MoRe film was crumpling of the film due to applied temperature stress. As the Ar plasma
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Figure 15: Plot of the voltage applied to the sample holder and temperature of the sample
while in the sputtering chamber.I: heating of the sample. II: stabilizing of the temperature
of the sample. III: process of sputtering. IV: stabilizing of the temperature of the sample.
V: cooling down. Gray area indicates a process of sputtering.

hits the target, it also heats the ejected particles, which in turn heat the substrate. The
short-term high thermal stress causes the thermal expansion of PMMA, which affects the
MoRe film. To reduce the thermal stress, one can reduce Ar flow or lower the applied
DC voltage. This will reduce the amount of target material particles and their kinetic
energy which reduces applied thermal stress. However, such a reduction of sputtering rate
might affect the film’s surface smoothness and purity, hence suspending superconductivity.
Reduction of the sputtering time, on the other hand, also leads to minimized thermal
expansion but also leads to thinner MoRe film. At some point, good electric contact
between thin MoRe electrodes and graphene exhibiting an elevated position relative to
the substrate can’t be assured.

Taking into account stated above, the following protocol was suggested for finding
appropriate settings for sputtering:

1. Adjust Ar flow and DC voltage by sputtering MoRe contacts on SiO2 chips with
prepatched golden contacts and checking the superconducting properties of the elec-
trodes. The DC voltage should be reduced but to the values where the sputtered
MoRe still shows expected superconducting properties sustainably over several sput-
tering session.

2. Estimate the sputtering rate with the found parameters using AFM for measuring
MoRe thickness and calculate the time needed for achieving thickness required for
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Figure 16: Images of two devices after the complete fabrication process. (a): Image of a
not working sample after a bad sputtering process. (b): Image of a working sample after
the sputtering process described in the text. The scale bar is 10µm.

good MoRe/graphene contact. With the bottom hBN being lower than 20nm in
our system, we set a benchmark at 50nm for MoRe contacts. At this point, the
sputtered film might still suffer from thermal stress. This issue should be resolved
in the following step.

3. With the rest of the parameters fixed, we now tune the last one: the temperature
of the sample holder. By tuning the temperature settings for the sample heater
placed on the holder, we aim to reduce the voltage drop in the current applied to
the heater at the start of the sputtering process and, hence, reduce the exposure of
the sample to the stress.

4. When all the parameters are modified, we conduct a final check of the sputtering
settings. The sputtering procedure should robustly provide a homogeneous film
without visible wrinkles and cracks on the surface and on the edges of the contacts
received after lift-off. We once again measure the sputtering rate (it should not have
significantly changed since the last measurement) and clarify that it allows us to
achieve the desired thickness of the MoRe contacts. Finally, we check that the MoRe
films transform to a superconducting state at the expected critical temperature.

An important detail: for each sputtering session, a short presputter(sputtering when
the sample is covered from target material particles by the shutter) should be done. It is
completed to ensure that the surface of the target is cleaned from the oxidized layer.

Following the protocol, these settings for the procedure were found:

1. The sample is controllably heated to 70◦C with the heating rate 6◦C/min.

2. After the pressure in the chamber is below 10−7mbar, presputtering is done. For
that, the DC generator is tuned for 35 W, and the Ar pressure is tuned to be
∼ 3.5e−2mbar. The presputter session lasts for about 3 minutes.

3. The power of the DC generator is reduced to 30 W, and Ar pressure is changed to
∼ 2.5e−3mbar.

4. After the Ar pressure and temperature are stabilized, the shutter is rotated to start
the sputtering process. After ∼ 150 seconds, the process is stopped by rotating the
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shutter once again.

5. A Few minutes after sputtering is done, the sample is cooled down with the rate
2◦C/min.

As a result, after the sputtering, we obtain a surface of a superconducting thin film of
MoRe with almost no cracks or wrinkles uniformly covering the sample. The next step of
fabrication is the lift-off. To do it, we place the sample in acetone and keep it at 60◦C for
several hours. After that, we spray some acetone with a syringe to detach all unwanted
metal. While keeping the sample in acetone, we check with the microscope that the lift-off
is done (otherwise, we can spray some more acetone) and blow the sample with N2. This
is the last step of the fabrication. In Fig. 16, pictures of two completed devices are shown.
Residues on the contacts and their irregular shape in the device (a) are the result of bad
sputtering. In contrast, if done correctly, as in Fig. 16b, the contacts to the graphene are
much more clear.

After the fabrication is completed, we prepare the sample for the measurements. For
this, we glue the chip to the chip carrier with silver paste and wire bond the contacts of
the sample with those of the carrier.
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4 Results

4.1 Graphene Sample Non-aligned to hBN

4.1.1 Contact Resistance

We start with the basic characterization of the superconducting contacts. AFM mea-
surements of the contacts, fabricated according to the procedure specified in the previous
chapter, are presented in Fig. 17(lower inset). The thickness is measured at the interface
between the gold pre-patched contacts and the MoRe layer. This approach is necessary
because exposure to the etching process can cause the SiO2 layer to lose some of its
uppermost material, leading to an underestimation of the contact thickness if measured
directly. Gold, being far less susceptible to etching, offers more reliable results. The
measured thickness is approximately 55nm, from which we estimate a sputtering rate of
around 22nm/min for the applied recipe.

Resistance measurements conducted on the MoRe electrodes, as shown in Fig. 17,
reveal a drop to zero at 8.45K. The corresponding energy gap, calculated using eq(1),
is ∼ 1.3meV. Both of these values align well with previously reported literature on this
type-II superconductor[48–50].

One of the key characteristics that defines the quality of a graphene/metal contact is
its resistivity. To measure it, we fabricated a series of Josephson junctions with different
lengths but identical widths. The total resistance of the junctions is given byR = 2Rc+ρL,
where Rc is the contact resistance, ρ is the linear resistivity of the graphene channel, and
L is the junction length. The contact resistance can be extracted from the linear fit of the
data as shown in Fig. 19, where the intercept divided by two provides Rc. This method
is referred to as the transfer-length method (TLM).

In graphene-based junctions, two different geometries can generally be implemented.
The first design (shown in Fig. 18) divides the graphene contacts into two sets of elec-
trodes, enabling 4-probe measurements. This design allows to connect the current source
and voltmeter separately to eliminate the influence of the line resistance. However, a
challenge arises when the device temperature exceeds the critical temperature of the elec-
trodes. In such case, the measured resistance includes not only the graphene’s resistance
but also the resistance of the electrode segments. This becomes especially problematic
when comparing measurements across different junctions, as the electrode segment re-
sistance may vary between junctions. For this reason, the second design (Fig. 18b) is
more suitable, as it minimizes the effect of MoRe resistance, even when the temperature
exceeds TC .

The Fig. 18b shows the set of junctions used for the TLM measurements. Resistance
was measured at Si gate voltages between 33 and 37 volts, away from the charge neutrality
point (CNP), and averaged over 17 measurement points. The plot of resistance versus
junction length is presented in Fig. 19. From the linear fit, the contact resistance is found
to be 80 ± 7Ω · µm.

A notable disadvantage of the TLM method arises when the junction lengths sys-
tematically deviate from their prescribed values, which can be caused by the multi-step
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Figure 17: Measurement of the resistance of MoRe contacts as a function of temperature.
Upper inset: a picture of the MoRe Hall bar on which the measurement was conducted.
Lower inset: an AFM scan of the MoRe contact to the golden pre-patched pattern.

Figure 18: Pictures of two possible designs of the Josephson junctions. Geometry (b) is
preferable for the measurements above critical temperature. The scale bar in the images
is 10µm.
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Figure 19: Transfer-length method. Blue dots: values of the resistance of the Josephson
junctions as a function of length. Orange line: linear fit of the dependence of the resistance
from the length of the junction. The intercept of the fit with vertical axes gives the value
of double the contact resistance. The measurements are done at the temperature above
the critical temperature of MoRe.

fabrication process. Despite this, the linear relationship between resistance and length
may still hold, making it difficult to detect the error. Given this, the actual contact
resistance could be slightly higher than the measured value. Even if we assume that all
junctions are 0.25 µm shorter—short enough to short one junction—the contact resistance
would still be approximately 120 Ω · µm, not much bigger than values presented in the
literature [24]. Such resistivity value indicates high-quality contacts.

Overall, the sputtering process developed during this master’s thesis project has
resulted in reliable contacts to graphene, exhibiting stable superconducting properties
across various devices.

4.1.2 Basic characterization

Now that the quality of the graphene contacts is ensured, we can proceed with the basic
characterization of the single-layer graphene device encapsulated in hBN. We will begin
by examining graphene that is not aligned with any of the hBN flakes. In this configura-
tion, the influence of hBN on graphene’s behavior is minimized, limiting its effect to the
”improved quality” of the graphene, thereby allowing us to observe its ”natural” behavior.
In this chapter, we will focus on two junctions, JJ1 and JJ2, both with a graphene width
of W = 1.5µm, but with different lengths: 0.3µm for JJ1 and 0.5µm for JJ2.

Fig. 20 displays the resistance measurements of two junctions as a function of the
Si gate voltage. The behavior observed is typical for single-layer graphene. The peak
in resistance signifies that the Fermi level has reached the Dirac point, at which the
resistance sharply increases because, according to the band structure, there are no free
charge carriers available. In reality, however, the position of the charge neutrality point
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Figure 20: Measurement of the resistance of the junctions as a function of voltage gate.
Red dashed line indicates values of resistance equal to half of the maximum value of
resistance. The vertical green dashed lines indicate the values in voltage gate where these
values were obtained.

shifts energetically across the graphene, resulting in the formation of randomly distributed
electron and hole puddles. These puddles lead to an increase in the width of the resistance
peak observed in the measurements. Thus, the width of the resistance peak serves as an
indicator of charge-carrier inhomogeneity. The full width at half maximum (FWHM)
of the resistance peak for the JJ1 is approximately δn ∼ 6 × 1010 cm−2. This value
is consistent with earlier results on similar devices, showing a threefold improvement
compared to SiO2-supported samples [24, 48], but is around six times greater than the
widths reported for suspended graphene systems [51]. The existence of these electron-
hole puddles has a significant impact on the proximity effect of the system at the charge
neutrality point, which will be explored in subsequently.

Another critical factor influencing the physics of graphene is the strong scattering of
charge carriers due to impurities. To quantify the impact of these impurities on our sam-
ple, we estimate the charge carrier mobility in the graphene by fitting the measurements
presented in Fig. 21 to the Boltzmann equation for transport

σ−1 = ( ne µc + σo)
−1 + ρs, (25)

where µc is the density-independent mobility caused by charge-impurity Coulomb
scattering, ρs is the contribution to resistivity from contact resistance and short-range
scattering, and σ0 is the residual conductivity measured at the charge neutrality point
(CNP)[24]. Through the fitting procedure, we can estimate the mobilities for the junc-
tions, with µc ≈ 87000 and 218000 cm2/Vs for JJ1, and µc ≈ 112000 and 143000 cm2/Vs
for the hole and electron sides, respectively. These values align well with those reported
for previous graphene/hBN systems[24] and suspended graphene [51]. Additionally, we
derive the contact resistance from ρs using the formula Rc = ρsW

2
, resulting in contact

resistances of Rc1 ≈ 117Ω for JJ1 and Rc2 ≈ 90Ω for JJ2, which approximately matches
the values obtained by TLM.
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Figure 21: Fit of the Boltzmann equation for the two junctions. The fit is completed
separately for electron and hole side for both of the junctions. The approximate value of
mobility is shown in the upper right corner of the graphs.

The asymmetry of the resistance values for electron and hole sides, as well as the shift
of resistance peak from zero voltage, is explained by n-doping caused by metallic contacts.
As the fermi energy is higher for MoRe, the graphene is constantly doped by electron flow
from the metal. This effectively increases fermy energy above the CNP, which explains
why finite negative gate voltage for reaching the CNP is needed. Furthermore, the doping
also causes the formation of an npn junction once the graphene on the hole side, which
effectively increases the resistance of the system.

The measurements conducted at the temperature of 300 mK in Kiutra are presented
in Fig. 22a. We observe that the resistance on the electron side drops to absolute zero.
To further investigate this phenomenon, we conduct differential resistance measurements
for this region, as shown in Fig. 22b. We notice a constant value of differential resistance
when the applied DC current exceeds ±1 mA, and drop of the resistance to zero as the
current is smaller than ±1 mA. This behavior is characteristic for superconductors, clearly
indicating the proximity effect within the junction.

To further investigate the proximity effect in the system, we conducted the same
measurement as shown in Fig. 22b across a range of Gate voltages, producing differential
resistance maps displayed in Fig. 23. Superconducting pockets are observed on both the
electron and hole sides, separated by the absence of proximity at the charge neutrality
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Figure 22: Transport measurement of the Josephson junction at 300mK. (a): measure-
ment of the resistance as a function of the voltage gate. (b): The measurement of the
differential resistance completed at electron doping of the graphene.

Figure 23: Maps of differential resistance obtained for the junctions.

point (CNP). When comparing the two junctions, we observe that the shorter junction has
a generally higher critical current where proximity disappears. This behavior is consistent
with the presence of npn junctions stated previously. The creation of these junctions
also gives rise to oscillations in both the critical current and normal resistance on the
hole side. In the presence of the formed cavity, the transmission probability for charge
carriers is reduced, causing the interference of electrons reflecting from the pn interfaces.
By altering the gate voltage, the interference shifts between constructive and destructive,
leading to Fabry-Pérot (FP) oscillations, similar to optical interferometry. To confirm that
these oscillations are indeed due to the FP effect, we plot the points where constructive
interference occurs, as shown in Fig. 24. For zero external magnetic field, an expression
for the resonance condition is

Lc

λF (Vgate )
= N +

1

2
, (26)

where N is the mode of interference, λF is the Fermi wavelength controlled by gate
voltage (λF ∼ 1√

Vgate
), and Lc is the reduced cavity length due to the formation of
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Figure 24: Fabry-Pérot oscillations. Blue dots shows dependence of number of the mode
from the charge carrier density. The red line: the square root fit. Inset: the scheme of
the formed npn junction and reduced cavity length.

the npn junction. From this equation, we observe that the interference mode has a
square root dependence on the applied gate voltage, which is exactly what we observe
in our measurement. We emphasize that this effect is possible only when charge carriers
propagate through the junction ballistically (at least partially).

To investigate further whether the transport at the junctions is ballistic or diffusive,
we can take two approaches. The first approach involves considering the Thouless energy,
which characterizes the time required for electrons to traverse the junction. In the case
of diffusive transport, the Thouless energy is given by the following expression:

ETh =
h̄D

L2
, (27)

where L is the length of the junction, and h̄ is the Planck constanta and D is the
diffusion constant

D =
vF lmfp

2
. (28)

In a ballistic Josephson junction, where the mean free path is longer than the length
of the junction (lmfp ≫ L), the traversal time can be estimated as τ ∼ L

vF
, where vF is
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Figure 25: Characterisation of the graphene Josephson junction. (a): product of critical
current and normal resistance as a function of carrier density. (b): mean free path of
the charge carriers as a function of carrier density. (c): coherence length calculated in a
diffusive regime.

the Fermi velocity. Then, the Thouless energy for ballistic transport can be estimated
as:

Eballistic
Th =

h̄vF
L

(29)

In the diffusive regime, the product of normal resistance and critical current is ex-
pected to be proportional to the Thouless energy

IcRN ∼ ETh

e
. (30)

However, in the ballistic regime, when the time spent by the electrons in the junctions
is limited, the relevant energy scale is superconducting energy gap of MoRe ∆

IcRN ∼ ∆

e
. (31)

Another approach is to straightforwardly estimate and compare the mean free path
to the length of the junction.

lmfp =
h̄L

e2WRN

√
π

n
(32)

The mean free path and product IcRn for the junctions are presented in Fig. 25a.
For both of the junctions the IcRn product is comparable to the energy gap IcRn ≈ 0.1∆
The mean free path for the junctions varies from 50 to 200 nm for JJ1 and from 30 to
130nm for JJ2.

In summary, although the mean free path is calculated to be shorter than the junction
lengths, the energy scale and FP oscillations point toward ballistic transport. Thus, we
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can conclude that the junctions are in an intermediate regime, where some electrons
exhibit ballistic behavior as they propagate through the junction.

The next step is to classify the junctions based on the relationship between the
junction length and the coherence length, ξ, which represents the characteristic distance
over which the superconducting order parameter remains coherent. When the junction
length is much smaller than the coherence length, the junction is classified as short;
otherwise, it is considered long. In ballistic junctions, the coherence length is determined
by the Fermi velocity, while in diffusive junctions, it is related to the diffusion constant
D.

ξb ∼
h̄vF
∆

ξd ∼
√
h̄D

∆
(33)

As our junctions are working in the intermediate regime, the estimation of the coher-
ence length is unclear. For more clarity, we use both of the approaches. The coherence
length for the diffusive regime are shown in Fig. 25c. Since the coherence length in the
ballistic regime is independent of both carrier density and junction length, we consis-
tently obtain a value of 160 nm. For both junctions, the coherence length is shorter than
the junction lengths in both the diffusive and ballistic regimes, indicating that these are
long junctions. In long junctions, the superconducting wavefunction decays substantially,
and the phase accumulated by charge carriers during their transit cannot be ignored,
influencing their behavior [50]. The propagation of the charge carriers through the junc-
tion as well as through the superconductor/nonsuperconductor interface occurs through
a special phenomenon called Andreev reflection. If in the absence of a barrier between
the superconductor and non-superconductor the energy of the electron is higher than the
superconducting gap, E >> ∆ they simply pass through the interface. However, when
E < ∆ the electron can’t enter superconductor as there are no energy states in the gap.
Instead, the electron is reflected back as a hole, effectively transferring a charge of 2e into
the superconductor, where the electron pairs decay into the condensate state [4, 52].

4.1.3 Quantum Hall effect

When subjected to a strong perpendicular magnetic field, graphene enters the quantum
Hall effect (QHE) regime. In this state, the Hall resistance (Rxy) becomes quantized,
while the longitudinal resistance (Rxx) drops to zero, except for peaks at specific magnetic
field values. This phenomenon arises from the formation of quantized energy levels in the
system, known as Landau levels (LLs). For a classical two-dimensional electron gas, the
system’s behavior can be described by the following Hamiltonian:

H =
1

2m
(p+ eA)2 A = Byx̂ (34)

for which we can consider the wavefunction Ψ(x, y) = exp (ikyy) Φ(y). With that, we
obtain
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Figure 26: Bending of the Landau levels at the edges of a sample in the quantum Hall
regime.

1

2m

(
−h̄2 d

2

dy2
+ (eB)2

(
y − h̄kx

eB

)2
)
Φ = EΦ. (35)

This equation is equivalent to a harmonic oscillator with frequency ωc = eB/c (called
cyclotron frequency) and energy levels where N corresponds to a number of formed Landau
levels. The resulting energy spectrum for electrons is then

EN = h̄wc

(
N +

1

2

)
+ V (y). (36)

Each electron in the system undergoes cyclotron motion, which localizes them and
prevents electrical conduction within the bulk of the material. However, near the edges
of the system, electrons encounter a confining potential that increases their energy. As
a result, the Landau levels bend near the edges of the system (Fig. 26). As a result,
for each electron at the edge, the number of available states is equal to the number of
filled Landau levels in the system. The slope of the confining potential outcomes in the
appearance of the local electric field Ey = −∂yV (y). Since the electric field is consistently
directed toward the bulk of the sample, the velocities of the electrons at opposite edges
of the sample are oriented in opposite directions.

The previous example analyzed a classical electron gas characterized by parabolic en-
ergy dispersion, which leads to evenly spaced energy levels. In contrast, graphene features
linear energy dispersion, which significantly influences the formation of Landau levels.
For the two-dimensional Dirac electron gas (2DEG), we can adopt a similar methodology,
starting instead with the Hamiltonian that describes Dirac electrons (eq(11)).

H = vσ⃗ · (p⃗+ eA⃗) = −ih̄vσ⃗ ·
(
∇⃗+ i

e

h̄
A⃗
)

(37)
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Considering the same wave function as in classical 2DEG we obtain the energy lev-
els

EN = ±h̄ωc

√
N . (38)

The positive and negative signs correspond to the electron and hole sides, respec-
tively, with the zero level being shared. Consequently, the resulting energy spectrum of
Landau levels (LLs) is no longer equally spaced but varies as a function of

√
N . Next,

we will calculate the LL degeneracy, which involves determining the number of cyclotron
radii within a sample of dimensions Lx and Ly. The centers of two neighboring circular
trajectories must be separated by ∆x = h̄

∆kyeB
. Given that ky = 2πi

Ly
due to periodic

boundary conditions, we find that ∆x = h̄
eB

· 2π
Ly

= h
eBLy

. Therefore, the LL degeneracy is

given by N
′
LL = L

∆x
= LxLyeB

h
. The LL degeneracy per unit area is then NLL = eB

h
. For

graphene, this value must also be multiplied by a degeneracy factor g, which equals 4.
From this we can derive the filling factor, defined as the ratio between the carrier density
and the number of LLs occupied.

ν =
n

NLL

=
nh

eB
(39)

We notice that for graphene (and 2DEG in general) for a constant ν we reached
a linear relation between magnetic field and carrier density. This results in the Hall
conductance for graphene being

σxy = g

(
N +

1

2

)
e2

h
. (40)

We perform measurements of the graphene system under a magnetic field in a two-
terminal system, shown in Fig. 27. In this setup up currents from the two contacts will
enter different edge states and propagate to the opposite contact. As, for example, shown
in Fig. 27 the current from the left contact enters the lower edge states and the current
from the right contact propagates through the upper edge. The currents exceeding the
contact are in equilibrium with the contact they come from. This means that if we
measure the voltage drop anywhere on the same side of the sample, we get a longitudinal
voltage drop VL = 0, and if we measure the voltage probe between two points anywhere on
different edges, we will obtain a Hall voltage drop VH = µ1−µ2(for simplicity we considered
the case of high magnetic field, such that the edge states are not overlapped). Thus, in
a two-terminal measurement, the observed signals represent a mixture of longitudinal
and Hall contributions. However, at elevated magnetic fields, specifically within the Hall
plateaus where the longitudinal signal vanishes, we expect to detect a clear Hall resistance
[22, 53].

The measurements of the differential resistance as a function of magnetic field and
gate voltage are shown in Fig. 28. We observe a clear emergence of Hall plateaus at filling
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Figure 27: Two terminal measurement of a conductor in quantum Hall regime. The edge
state carrying the current to the left is in equilibrium with the right contact. The edge
state carrying the current to the right is in equilibrium with the left contact. The figure
adapted from [20].

factors 2,6,10, and so on. The oscillations of the differential resistance, called Shubnikov-
de Haas oscillations, start to be visible at a low magnetic field of ∼ 300 mT, and the
first hall plateaus are formed by ∼ 1T (Fig. 29). The formation of Hall plateaus starts to
occur at lower fields for the electron side, which indicates the effect of the npn cavity on
the magnetotransport measurement of the device.

Fig. 28 illustrates the anticipated linear relationship between magnetic field B and
charge carrier density n at a specific filling factor for the 2DEG system. This linear de-
pendence allows us to derive the relationship between n and the gate voltage Vg. Utilizing
equation eq(39), we find that at Hall plateaus, where the differential resistance is constant,
the electron density is given by:

n(B) =
Bνh

e
(41)

Thus, the slope of the Hall plateau stripes is given by dn
dB

= νe
h
= ν

ϕ0
, with ϕ0 denoting

the magnetic flux quantum. In our experimental setup, the hBN/graphene system with
the applied voltage to the gate acts as a parallel plate capacitor. This implies that by
extracting the correlation between gate voltage and carrier density, we can calculate the
capacitance of the system per unit area.

n =
CVg
e

(42)

The capacitance of the system is then

C =
eν

Φ0

dB

dV
. (43)
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Figure 28: Landau fan measurements performed in graphene Josephson junction.

Figure 29: Measurement of the resistance of the junction with the change of the voltage
gate at the magnetic field 5T. Gray dashed lines indicate the expected quantized resistance
values.
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The obtained capacitance for JJ1 is 9.76 nF/cm2. This knowledge allowed us to plot
the behavior of the graphene against carrier density and conduct analysis, which was done
in the previous text.

4.2 Aligned graphene sample

We now turn our attention to graphene samples encapsulated in hBN, where the graphene
flake is aligned with one of the hBN layers. We will begin with the same set of measure-
ments discussed earlier, allowing us to identify the primary features introduced by the
moiré potential. This will be followed by a detailed analysis of Fabry-Pérot oscillations
and the supercurrent interference. Finally, we will discuss the high-field proximity ob-
served in the JJs.

For this study, four junctions were fabricated and measured, each with a width of
1.5µm and lengths of 0.2µm, 0.3µm, 0.5µm, and 0.6µm. We begin by examining the
resistance as a function of silicon gate voltage, as shown in Fig. 30. The key feature that
indicates the formation of a moiré superlattice is the appearance of two satellite peaks
symmetrically positioned with respect to the CNP. These peaks arise from the formation
of satellite Dirac points (SDP). We notice that the DP on the electron (eDP) side is much
less pronounced in comparison with the hole DP (hDP), whose resistance is comparable
to that of the CNP.

We observe that the positions of the satellite peaks vary in carrier density across
different junctions, which can be attributed to variations in the twist angles between the
graphene and hBN layers in each sample. To estimate the twist angle for each junction, we
first determine the capacitance, following the same approach used for non-aligned samples.
Since the Dirac cone in aligned samples remains unchanged and significant alterations in
the band structure only occur in remoteness to the Dirac point, the Landau fan near
the charge neutrality point should exhibit the same behavior. After this, we identify the
carrier densities at which the satellite peaks emerge.

The formed moiré superlattice is characterized by its wavelength with the corre-
sponding area of moiré unit cell A = λ2

√
3

2
. The new Dirac points are expected to form at

the full filling of the unit cells ns =
4
A
. By expressing the λm as a function of the charge

carrier density, we obtain a relation for the moiré superlattice wavelength.

λm =

√
8√
3n

The maximum value of lambda occurs at the perfect alignment of hBN and graphene
and equals approximately 14nm. With the increase of misalignment angle, lambda re-
duces. The misalignment angle can be calculated from eq(24). For our samples, we obtain
wavelengths varying from 13 nm to 13.6 nm, corresponding to rotation angles from 0.21◦

to 0.38◦. Despite all the JJs being fabricated on the same graphene flake, we observe
variations in the relative twist angles. This suggests that during the fabrication process,
either the graphene or hBN (or both) experienced deformation. Moreover, the satellite
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Figure 30: Resistance measurements of the junctions with graphene aligned to hBN.

peaks observed in JJ2 and JJ4 are not as sharp as those in the other junctions; instead,
we see a primary peak with a smaller adjacent one.

As for the non-aligned samples, while conducting the measurements of R vs voltage
gate at lower temperatures, we observe a drop of resistance to zero, which is explained by
the proximity effect.

Differential resistance measurement shown in Fig. 31 shows clear proximity of the
sample. While increasing the DC current going from negative to positive values we observe
two peaks of differential resistance before drop of the resistance to zero. We also see that
the superconducting region on this plot is asymmetric relative to the zero DC current,
which is explained by so-called premature switching, which will be discussed later.

As for the non-aligned sample, we observe no proximity at CNP and superconducting
pockets. The size of the pockets decays with the increasing length of the junction. We
also, right as in the case with the non-aligned sample, see that the critical current for the
electron side is generally larger than for the hole side. Similarly, as for the non-aligned
sample, we address this issue to the formed npn cavities caused by n doping from the
MoRe contacts. The situation is reversed in the case of the p-doping from the contacts as
shown [48], where for the superlattice sample, a higher critical current was observed on
the electron side. We also notice significant differences observed comparing eDP and hDP.
For the hole side, in comparison with the electron side, we observe much higher normal
resistance and absence of proximity. These effects can’t be addressed to the electrode
doping as in the case of p-doping, these features are preserved. This points out that the
nature of this difference emerges from the difference in the band structure in the vicinity
of the Dirac points.
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Figure 31: Differential resistance map measurements of four different junctions with
graphene aligned to hBN. The measurements are performed at a temperature of 65 mK.

4.2.1 Ballistic regime. Fabry-Pérot oscillations

On the differential resistance maps, we observe asymmetric shapes of proximity pockets
in the positive and negative current values. These two current values are called switching
and retraping current, respectively. Switching and retraping currents are usually lower
than the critical current of the system. The difference between these values is noticeable
in our measurement with big random deviations of the switching current. Such behavior
of the values can be addressed either by the underdamped regime of the junctions or by
their overheating. In order to suppress the behavior and to be able to observe much clearer
borders of proximity, we conduct the same measurement at a higher temperature, which
is shown in Fig. 32. Now we can see that both critical and switching currents obtain more
similar values, and the randomness of the switching current is significantly suppressed.
This allows us to notice the oscillation of the critical current with frequency matching
the oscillation of normal resistance at the same voltage gate values. The oscillations,
similar to the case of non-aligned samples discussed above, are explained by Fabry-Pérot’s
interferometry of charge carriers propagating in a ballistic regime. The oscillations are
visible to both sides of the hDP yet suppressed close to it.

For the FP with smooth potential, a following derivation for oscillation of current
and conductance can be derived, as shown in [54]. Using the equation for resonance

39



Reproducible superconducting contacts to graphene-based heterostructures

Figure 32: dV/dI map measurement performed at the temperature 2 K.

Figure 33: Fabry-Pérot oscillations for the aligned sample. Blue dots show the dependence
of the number of the mode from the charge carrier density. The red line: the square root
fit.
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Figure 34: Change of the differential resistance with gate voltage as a function of gate
voltage and bias voltage.

condition 2Lc/λF = N where Lc is the length of the cavity and dispersion relation eq(17)
we can get the equation for dispersion relation ε0 = hvF/2Lc. Using the relation for the
energy-dependent conductivity oscillations

G(ε) = G0 + δG sin(
2πε

ε0
), (44)

we get an equation for the oscillation of the differential conductance

dI

dVb
= G0 − δG sin(

2πεF
ε0

) cos(
πeVb
ε0

). (45)

The expression shows that FP oscillations can be tuned not only by the change
of a voltage gate but also by the change of the voltage bias. Measurement shown in
Fig. 34 shows the changes in differential resistance as a function of both of the values.
Qualitatively we observe the behavior expected by eq(45). We see FP oscillations as a
function of both of these values forming a chequerboard-like dependence of differential
resistance up to Vb = 20mV. The deviation from predicted dependence can be explained
by the change in the effective positions of the p-n junctions with the change of the gate
voltage. As the periodicity of the chequerboard potential becomes smaller as we move
away from CNP, one can conclude that the cavity length becomes bigger with increased
hole doping of the graphene.
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4.2.2 Supercurrent interference

Figure 35: Oscillations of the supercurrent in JJ as a function of applied magnetic field.
The white line indicates the Fraunhofer pattern.

Next, we observe the behavior of the junction in the presence of an external magnetic
field. As expected, we observe the interference of a supercurrent. In relatively small
magnetic fields, it follows the standard Fraunhofer pattern. At the fields > 5mT, we start
to notice the deviation from the predicted behavior. As the periodicity of the oscillations
preserves, the amplitude of the lobes is changed. When we extend the measurement
to higher magnetic fields, the deviation from the Fraunhofer dependence becomes more
obvious. The lobes of superconductivity preserve periodic behavior, however, at some
magnetic fields we observe merging of neighbouring lobes. In the other values, we observe
the absence of any noticeable superconductivity. Finally, we claim that at some point,
the decaying of the maximum values of critical current stabilizes at some constant values.
This feature is a signature of redistribution of the current flowing through the junction
closer to its edges. The formation of edge currents under magnetic fields will play an
important role in the discussion of the proximity effect at high magnetic fields in the
following text.

4.2.3 Hofstadter butterfly

First, we focus on the general structure of the observed Landau fan measurement. As
was mentioned in the theoretical introduction, the moiré structures are applicable for the
observation of the Hofstadter butterfly. More generally, the effect can be observed only
when the magnetic length lB =

√
h̄/eB (the value characterizing the cyclotron motion

of the charge carriers) is of the order of the wavelength of the periodic potential[39]. For
example, for observation of the Hofstadter butterfly in the crystal lattice of non-aligned
single-layer graphene, a magnetic field of ∼ 80kT is needed. Such a high value of the

42



Reproducible superconducting contacts to graphene-based heterostructures

Figure 36: Oscillation of the critical current in the JJ at higher magnetic fields.

required field makes this effect impossible to observe. However, in the presence of moiré
wavelength which values can reach ∼ 14nm for the hBN/graphene system, the required
field is of achievable values ∼ 30T.

As shown by D. R. Hofstadter [37], the behavior of the system results in the self-
similar recursive energy structure. Later, G. Wannier [55] came up with important insight
into the system when adding carrier density into consideration. Replotting the Hofstadter
butterfly into a density-field diagram (Wannier diagram), the Hofstadter butterfly trans-
forms into a set of linear trajectories described by the Diophantine relation

n

n0

= t
ϕ

ϕ0

+ s, (46)

where n and ϕ are carrier density and magnetic flux, n0 and ϕ0 are carrier density
of a unit cell and magnetic flux quantum, t and s are integer values. In Fig. 37, the
Landau fan measurement of the aligned sample is shown. We observe the emergence of
the Hofstadter butterfly, which is demonstrated as a set of lines emerging from CNP and
sDP, intercepting each other at fractional values of normalized magnetic flux.

4.2.4 High-field proximity

Fig. 38 shows the landau fan measurement done on the electron doping side. The dark
blue regions indicate superconducting states, which are observed up to surprisingly high
magnetic field values of ∼ 7T. We observe several distinct proximitized regions. We
notice that in some of them the proximity is interrupted by random areas of normal state.
Such different behaviors of superconductivity, as well as the shapes of the regions, are
explained by the effect of the magnetic field on Andreev-bound states responsible for the
proximity. The following is the discussion of these different regions:

1. The area marked with an orange line in Fig. 39 marks the region where the effect
of the magnetic field on Andreev-bound states is insignificant. In the complete
absence of a magnetic field electrons and holes have the opposite momenta and re-
trace trajectories of each other (Fig. 39b). The phases acquired in the junctions
also cancel each other. The situation changes in the presence of the magnetic field
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Figure 37: Emergence of Hofstadter butterfly in the aligned system. (a): Landau Fan
diagram of the graphene sample aligned to hBN. Dashed lines indicate visible Hall states.
(b): Schematics of Landau level visible in (a).
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Figure 38: Landau Fan diagrams at electron doping of the graphene. (a): the measure-
ment is performed at a bias current of 100 nA. (b): the measurement is performed at zero
bias current.
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when both electrons and holes acquire cyclotron trajectories. The proximity can
still occur as long as the energy difference between holes and electrons is smaller
than the superconducting gap, the phase difference is relatively small, and the tra-
jectories are not separated by the values larger than coherence length and fermi
wavelength (otherwise, the Cooper pair can not be formed)(Fig. 39c). In the [54],
the maximum value of the magnetic field at which these conditions are agreed is
estimated as B∗ ≈ ∆/eLvf , which approximately takes values of 5mT. Noticeably,
around these values, we noticed the first deviation of supercurrent interference from
the Fraunhofer pattern.

2. As the magnetic field is increased further, these conditions can no longer be fulfilled.
As the cyclotron radius of the charge carriers is calculated as rc =

pF
eB

the trajectories
of the charge carriers deviate from each other further and further and create open
trajectories (trajectories of the electrons and holes can not form a closed loop even
after a number of reflections from the interfaces). In this case, the transfer of
Cooper pairs is impossible. The situation is different, however, when one considers
the trajectories affected by the edges of the sample. In this case, it is possible that
the charge carriers form closed loops due to reflection from the edges (Fig. 39d).
As the phase difference, in this case, is not zero but rather takes random values
we observe fluctuation between superconducting and not superconducting state. In
order to observe this regime, the cyclotron radius of the trajectories should be larger
than half of the junction length 2rc > L. Using the dispersion relation for graphene,
one can derive the equation for cyclotron radius as

rc =
PF

eB
=
h̄kF
eB

=
h̄
√
πn

eB
(47)

and then define the borders of the regime which is shown in the Fig. 39 with a yellow
line.

3. At even higher magnetic fields, when rc < L/2, the cyclotron radius becomes such
small that the trajectories can fit in the junction without touching the opposite NS
interface. The transfer of charge carriers can happen only by skipping edge orbits
and the transfer of Cooper pairs can no longer happen by the mechanisms described
above. Instead, we should observe the gradual formation of Landau levels. However,
even at this regime, in the presence of formed Landau levels, we see random pockets
of superconductivity (green region in the Fig. 39). As at such magnetic fields, the
current must be mediated with the chiral edge states [56]. In order for proximity to
occur the states should be coupled. As the width of the junction (1.5 µm) strongly
exceeds the coherence length of the MoRe and cyclotron radius(at magnetic fields
where landau splitting is observed) the coupling does not happen through direct
transfer of charge carriers along N/S interface. Rather it happens through hybrid
electron-hole modes formed at the N/S interface. The mechanism is sketched in the
Fig. 39e. Once the electron in the edge state reaches the N/S interface, it turns
into the hybrid e-h mode, which propagates along the interface until it reaches the
opposite edge of the device. There, it couples to the new edge state as a hole and
propagates back to the first interface, where it transforms back to the hybrid state
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Figure 39: Proximity effect in the aligned hBN/graphene system. (a): Landau fan dia-
gram with marked regions exhibiting different mechanisms of superconductivity discussed
in the main text. (b) - (e): eletron-hole pairs under magnetic fields. (b): ballistic JJ
with zero external magnetic field. (c): ballistic JJ under small magnetic field. (d): closed
trajectories formed at the edge of the JJ under an intermediate magnetic field. (e): mech-
anism of proximity through the chiral edge states. Figures (b) - (d) are taken from [54].
Figure (e) is adapted from [56].

to propagate to the other edge and close the loop. This process allows the transfer
of Cooper pairs through the edge states separated by significant distances [56].

4. Finally, we discuss the region of superconductivity where the proximity is observed
at as high magnetic fields as 7T (marked with red color in the Fig. 39). We notice
that the area emerges right at eDP. We also notice that in compare with the region
of superconductivity carried by hybrid states, here we don’t observe any presence
of formed Landau levels. Indeed, if we complete the same Landau fan measurement
but with a high current bias of 200µA to suppress any proximity, we notice that no
Landau levels in the area are formed. We also state that eq(47) for the cyclotron
frequency is not correct when reaching the eDP; as for its derivation, the approx-
imation of linear dispersion relation was used, which is not appropriate once the
Fermi energy is far from CNP. To find out whether the proximity mechanism here is
similar and explained by the cyclotron radius being smaller than half of the length
of the junction, one needs to find the relation between carrier density and the Fermi
wave vector, which will reflect the band structure at eDP. The thesis concludes,
leaving this question unresolved.
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5 Conclusion

The following results were obtained from this thesis. First, we adjusted the recipe of the
MoRe sputtering to achieve a robust superconducting contact to encapsulated graphene
heterostructures. To do so, the effect of several physical processes preventing supercon-
ductivity and good contact between graphene and MoRe were considered. One of the
main issues encountered was the deformation of the superconducting film due to thermal
stress. Considering that, we adjusted the sputtering parameters to find good settings
for a robust thin superconducting film deposition. To ensure the contact recipe reliably
works, we measured the critical temperature of the resulting electrodes and the contact
resistance using the transfer-length method. Both of the values are in agreement with the
literature.

By implementing this recipe into the fabrication process, we were able to manufac-
ture several devices of graphene-based Josephson junctions. Firstly, studied monolayer
graphene samples non-aligned to the encapsulating hBN flakes. The estimated mobility
of the carriers varies from 105cm2V−1s−1 to 2×105cm2V−1s−1 for one of the devices. Such
high mobility is the outcome of the good quality of the devices. The junctions also showed
ballistic behavior, confirmed by observing Fabry-Pérot oscillations.

Secondly, we studied JJs, where the graphene was aligned to the hBN. The system
exhibits the moiré pattern, which enables us to observe the Hofstadter butterfly. We con-
cluded a ballistic regime of the junctions by detecting Fabry-Pérot oscillations, which we
observed with the change of both voltage gate and voltage bias. Finally, we observed the
superconducting proximity effect up to surprisingly high magnetic fields of 7 T. Although
several mechanisms behind this phenomenon were discussed, the exact nature of super-
conducting proximity at such high fields remains unclear. The results obtained in this
master thesis will hopefully inspire and motivate future research needed to understand
this intriguing effect fully.
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