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Outline - Lecture 8

• Reminder about the QHE effect and occurrence of 1D edge states.

• New types of topological order defined by topological invariants.

• Berry’s phase.

• Example of occurrence of the Berry’s phase in graphene QHE.

• Haldane model - Graphene-like model as starting point for topologically non-
trivial phases.

• Topological insulators - new class of topological phases in zero magnetic field.
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Linking filling of the LLs with transport measurements
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QHE – delocalized chiral 1D edge states

• Formation of chiral 1D edge states at the edges of the device.

• These states represent a novel order and ground states of matter.

• They are topologically protected and their exact quantization Rxy = (h/e2)/ν
follows from this protection (here ν = 3).

• Number of edge states = Chern number (here C = +3, where + is clockwise and –
is counterclockwise motion)
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Topologically protected edge and localized bulk states

• Orbital states in the bulk are localized  bulk is insulating and a mobility gap is formed (Anderson localization).

• 1D edge states moving in one direction are formed at the edge  these are topologically protected, as back-
scattering is not allowed, resulting in perfectly quantized and dissipation-less states.

• Symmetry protected topological states  a topological invariant protects these states and their quantization. 

Schematic of a Quantum Hall State: Band-diagram of edge states:
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Types of order
• Most of condensed matter physics is about how different kinds of order emerge from interaction between many

simple constituents.

• Until 1980, all ordered phases could be understood being due to some sort of “symmetry breaking”

 An ordered state appears at low temperatures when the system spontaneously loses one of symmetries
present at high temperature and establishes a well-defined order parameter.

Examples:

• Crystals break the translation and rotation symmetries of free space.

• Liquid crystals break rotational but not translational symmetry.

• Magnets break time-reversal symmetry and the rotational symmetry of spin space.

• Superfluids break an internal symmetry of quantum mechanics.
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Types of order
• At high temperature, entropy dominates and leads to a disorder state.

• At low temperature, energy dominates and leads to an ordered state.

 Landau theory of symmetry-breaking and phase transitions covers this physics in full. It states universality of
phase-transitions, and defines an order parameter that spontaneously nucleates below a critical parameter
(temperature, field etc.):

Examples:
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New order - Topological order
Definition I:

• In a topologically ordered phase, some physical response function is given by a topological invariant.

Definition II:

• A topological phase is insulating but always has metallic edges/surfaces when put next to a vacuum or an
ordinary phase.

Definition III:

• A topological phase is described by a topological field theory.

 Topological invariant is a quantity that does not change under
continuous deformation.

• Most topological invariants in physics arise as integrals of some geometric quantity.
At any point of a surface we can define a signed Gaussian curvature:

• The area integral of the curvature over the whole surface is quantized, and is a
topological invariant (Gauss-Bonnet theorem). Here the genus g = 0 for a sphere,
n for n-holed torus etc.
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Equivalence between shapes in topology
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What are the topological invariants in the QHE?
• For the topological invariants in the QHE we need one fact about solids Blochs theorem.

• The electronic single-particle wavefunctions are maps and hence the classification principles of band dispersions
are based on deep notions of topology and quantum geometry.

• One-electron wave-functions in a crystal can be written, where k is the crystal momentum and u is periodic, with
the same periodicity as the unit cell.

• Crystal momentum k can be restricted to the Brillouin zone, a region in k-space with periodic boundaries.

• As k changes, we can map out an energy band. Set of all the bands = band structure.

• The Brillouin zone will play the role of the surface as in the previous example.

• And one property of quantum mechanics, the Berry phase will give us the curvature.

kx

ky
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Berry’s curvature and phase

Berrys phase

Berry vector potential Berry curvature

Ω (k)

(Plays the role of a fictitious B-field (of orbital nature), vector potential and 
Aharonov Bohm phase)

Chern number

C = 
ଵ

ଶగ
ଶ

BZ

• What kind of curvature can exist for electrons in a solid?

• Consider a quantum-mechanical system in its non-degenerate
ground-state.

• The adiabatic theorem in quantum mechanics implies that, if the
Hamiltonian is changed slowly, the system remains in its time-
dependent ground state.

• When the Hamiltonian goes around a closed loop k(t) in
parameter space, there can be an irreducible phase relative to
the initial phase.
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Pseudo-spin

• Pseudo-spin is oriented at the equator A and B have same amplitudes.
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Bloch sphere representation:Real space: Wave functions:
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Zero electron mass and Berry curvature in graphene
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Berry curvature in graphene
Pseudo-spin textures in k-space:

Trajectories around Dirac point in k-space:

Dirac points are Berry 
curvature monopoles
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Visualizing pseudo-spin textures
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Pseudo-spin textures in k-space:

1800 5400Rotating the k-vector in real space:

Berry’s phase of π and non-trivial topological properties.
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Haldane model

• Graphene has all the key ingredients to be topological, Berry curvature etc.

• How to make graphene topological?

• Haldane model introduces the Haldane mass M (M and –M) on each sub-lattice (A and B), and allows for next
nearest neighbor hopping, which is defined by the hopping parameter t2 and the phase φ.

• This is equivalent to introducing a periodic out of plane magnetic field B.

Haldane model on a honeycomb lattice: Periodic out of plane B-field:
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Haldane model
Haldane model on a honeycomb lattice: Periodic out of plane B-field:

Graphene tight-binding Hamiltonian: Haldane model:
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Haldane model – Berry curvature
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Haldane model – Chern numbers

• Integration of the Berry curvature over BZ gives rise to 
topological Chern bands, with Chern number 1 and -1.
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Quantum Hall Effect without B-field

• 8. Lecture 13.6 – More Quantum Hall, Graphene Quantum Hall
(Exercise 16.6) - Seminar sessions

• Quantum Spin Hall effect and Quantum Anomalous Hall effect – Quantum Hall effect in zero magnetic field, 
given rise by a combination of topological electron states and a strong spin-orbit coupling and/or ferromagnetic 
bulk of the material.
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Quantum Hall without B-field (LLs)

• Quantum Anomalous Hall effect – even in zero B-field the bulk is insulating and edge states develop Rxx = 0 and
Rxy = (h/e2)

• Reversing of the B-field flips the magnetization direction and the direction of the edge state.
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2D Topological insulators
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3D Topological insulators
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3D Topological insulators


