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Qutline - Lecture &

Reminder about the QHE effect and occurrence of 1D edge states.
New types of topological order defined by topological invariants.
Berry’s phase.

Example of occurrence of the Berry’s phase in graphene QHE.

Haldane model - Graphene-like model as starting point for topologically non-
trivial phases.

Topological insulators - new class of topological phases in zero magnetic field.
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Linking filling of the LLs with transport measurements
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QHE — delocalized chiral 1D edge states

* Formation of chiral 1D edge states at the edges of the device.
* These states represent a novel order and ground states of matter.

* They are topologically protected and their exact quantization R, = (h/e?)/v
follows from this protection (here v = 3).

* Number of edge states = Chern number (here C = +3, where + is clockwise and —
is counterclockwise motion)
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Topologically protected edge and localized bulk states

Schematic of a Quantum Hall State:
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Band-diagram of edge states:
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* Orbital states in the bulk are localized = bulk is insulating and a mobility gap is formed (Anderson localization).

* 1D edge states moving in one direction are formed at the edge = these are topologically protected, as back-
scattering is not allowed, resulting in perfectly quantized and dissipation-less states.

* Symmetry protected topological states = a topological invariant protects these states and their quantization.
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Types ot order

* Most of condensed matter physics is about how different kinds of order emerge from interaction between many
simple constituents.

e Until 1980, all ordered phases could be understood being due to some sort of “symmetry breaking”

- An ordered state appears at low temperatures when the system spontaneously loses one of symmetries
present at high temperature and establishes a well-defined order parameter.
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Crystals = break the translation and rotation symmetries of free space.

Liquid crystals = break rotational but not translational symmetry:.

Magnets = break time-reversal symmetry and the rotational symmetry of spin space.

Superfluids = break an internal symmetry of quantum mechanics.
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Types ot order

* At high temperature, entropy dominates and leads to a disorder state.
* Atlow temperature, energy dominates and leads to an ordered state.

- Landau theory of symmetry-breaking and phase transitions covers this physics in full. It states universality of

phase-transitions, and defines an order parameter that spontaneously nucleates below a critical parameter
(temperature, field etc.):

Examples:
“Fluid” “Ising” (uniaxial) ferromagnet
Liquid /~ ¢
» (:
Pressure H Bisamsicsons Temperature
Gas (Fleld)
T emperature' B
ﬁ =
I -T My - M, ~ fe=1
PL~=Pc ™ I
¢ ¢

Experiment : 3 =0.322+0.005
Theory : p =0.325+0.002
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New order - Topological order

Definition I:
* Inatopologically ordered phase, some physical response function is given by a topological invariant.

Definition Il:

* A topological phase is insulating but always has metallic edges/surfaces when put next to a vacuum or an
ordinary phase.

Definition Ill:

* Atopological phase is described by a topological field theory.

— Topological invariant is a quantity that does not change under

continuous deformation. )
H N
'*:3 o .\
* Most topological invariants in physics arise as integrals of some geometric quantity. . Y
At any point of a surface we can define a signed Gaussian curvature: *3 }
i (,.1,.2)—

* The area integral of the curvature over the whole surface is quantized, and is a
topological invariant (Gauss-Bonnet theorem). Here the genus g = O for a sphere,
n for n-holed torus etc.

/ kdA = 2mx = 2m7(2 — 29)
M
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Equivalence between shapes in topology
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What are the topological invariants in the QHE?

* For the topological invariants in the QHE we need one fact about solids = Blochs theorem.

* The electronic single-particle wavefunctions are maps and hence the classification principles of band dispersions
are based on deep notions of topology and quantum geometry.

* One-electron wave-functions in a crystal can be written, where k is the crystal momentum and u is periodic, with
the same periodicity as the unit cell.

* Crystal momentum k can be restricted to the Brillouin zone, a region in k-space with periodic boundaries.
* As kchanges, we can map out an energy band. Set of all the bands = band structure.
* The Brillouin zone will play the role of the surface as in the previous example.

* And one property of quantum mechanics, the Berry phase will give us the curvature.

Nn‘dkxn*dkyn

Brillouin zone

Bloch .:];hc.rc
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Berry’s curvature and phase

e What kind of curvature can exist for electrons in a solid?

* Consider a guantum-mechanical system in its non-degenerate
ground-state.

* The adiabatic theorem in quantum mechanics implies that, if the
Hamiltonian is changed slowly, the system remains in its time-
dependent ground state.

*  When the Hamiltonian goes around a closed loop k(t) in
parameter space, there can be an irreducible phase relative to
the initial phase.

Berry vector potential Berry curvature
A = (| — iVi|r) Qk) =VxA
Berrys phase Chern number
¢=%A-dk C=—¢ndk?=v
2T g,

(Plays the role of a fictitious B-field (of orbital nature), vector potential and

Aharonov Bohm phase)
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Pseudo-spin

O
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Wave functions:
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Bloch sphere representation:
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* Pseudo-spinis oriented at the equator = A and B have same amplitudes.
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graphene

AR, = R(B, T)cos[2®(Bg/B+1/2 4+ 3)]

* By = Shubnikov-de Haas
Oscillation Frequency in 1/B
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Berry curvature in graphene

Pseudo-spin textures in k-space:

AT
b e L A R R el
Yy SRR YINYY
IEEEEE _}ffff A ® '
TEEEY t1rs
TR tfrs
TR r f 7
S L R, b s
g---p:‘-b - = = _52‘ 0 - -
h W Y - e LA NN
A ANV Y-~ RN
ANV A e BRE
ERRER] [ v v
BRERRE) vir AV 1 o o
NI
T-:\\\\.‘l’ffffff’__\\\\-
PN N G G DT Sy , , ,
-5 [ 5 - 0 m
kx
Trajectories around Dirac point in k-space:
b b 5 Dirac points are Berry
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Visualizing pseudo-spin textures

Rotating the k-vector in real space:
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Haldane model

Haldane model on a honeycomb lattice: Periodic out of plane B-field:

Graphene has all the key ingredients to be topological, Berry curvature etc.
How to make graphene topological?

Haldane model introduces the Haldane mass M (M and —M) on each sub-lattice (A and B), and allows for next
nearest neighbor hopping, which is defined by the hopping parameter t, and the phase .

This is equivalent to introducing a periodic out of plane magnetic field B.
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Haldane model

Haldane model on a honeycomb lattice: Periodic out of plane B-field:
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Graphene tight-binding Hamiltonian: Haldane model:
3 3
Ho(k) =1¢t,- Z (cos(k - A;)0, — G'},Sil](k : a;)) H(k) = Hy(k) + (M + 2t, Z sin(k-bf)) -0,
(=1 j=1

massterm
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Haldane model — Berry curvature

1.0, t;,=0.0,M=0.2
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Haldane model — Chern numbers

(b)

Graphene
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* Integration of the Berry curvature over BZ gives rise to
topological Chern bands, with Chern number 1and -1.
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Quantum Hall Effect without B-field

Hall Spin Hall Anomalous Hall
(1879) (2004) (1881)

Quantum Hall Quantum spin Hall ‘Quantum anomalous Hall
(1980) (2007) (2013)

Quantum Hall Quantum spin Hall Quantum anomalous Hall

* Quantum Spin Hall effect and Quantum Anomalous Hall effect — Quantum Hall effect in zero magnetic field,
given rise by a combination of topological electron states and a strong spin-orbit coupling and/or ferromagnetic
bulk of the material.

o | Chair of Experimental
Dmltrl K E]CEJEOV LMU| @z | Solid State Physics

MINCHEN




Quantum Hall without B-field (LLs)

QHE
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* Quantum Anomalous Hall effect — even in zero B-field the bulk is insulating and edge states develop R,, = 0 and

Ry = (h/€?)

* Reversing of the B-field flips the magnetization direction and the direction of the edge state.
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2D Topological insulators

Key: the topological invariant predicts the “number of quantum wires”.

While the wires are not one-way, so the Hall conductance is zero, they still contribute to
the ordinary (two-terminal) conductance.

There should be a low-temperature edge conductance from one spin channel at each edge:
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Konig et al,,

Science (2007) —
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This appears in (Hg,Cd)Te quantum wells as a quantum Hall-like plateau in zero magnetic field.
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3D Topological insulators

(a) Quantum Hall insulator (b) 2D topological insulator (c) 3D topological insulator

(d)
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3D Topological insulators

First observation by D. Hsieh et al. (Z. Hasan group), Princeton/LBL, 2008.

This is later data on Bi2Ses from the same group in 2009:
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The states shown are in the “energy gap” of the bulk material--in general no
states would be expected, and especially not the Dirac-conical shape.
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