Chair of Experimental Solid State Physics, LMU Munich

"Introduction to Graphene and 2D Materials"

\qquad

Outline - Lecture 7

- Reminder about the Landau Level quantization and the Quantum Hall Effect.
- Consequences of the Dirac equation:
- Relativistic Quantum Hall effect in graphene
- Landau Fan diagram
- Zeeman splitting and QH ferromagnetism
- π-Berry's phase

Quantum oscillations

- Orbits in k -space are always in planes perpendicular to B .
- The electronic density of states at the Fermi energy E_{F} determines most of a metal's properties. Therefore there are many types of quantum oscillations with the magnetic field.
- Therefore the metal's properties (which depend on the energy level density of states at E_{F}) will oscillate as B changes, with a period given by:

$$
\Delta\left(\frac{1}{B}\right)=\frac{2 \pi e B}{\hbar A}
$$

Large B-fields - Quantum Hall effect

Hall effect measurement scheme:

Lorentz force is balanced by electric force: $e(v \times B)=e E$
Current: I = neAv (n - carrier density, A - area, v-drift velocity)

Hall voltage: $V_{H}=E W=I B /$ net $(t=1$ in $2 D)$
Hall resistance: $R_{x y}=V_{H} / I=B /$ net ($t=1$ in 2D)

Small B:

Large B:

Free electron in a B-field

$$
H=\frac{\pi^{2}}{2 m}=\frac{(\vec{p}-q \vec{A})^{2}}{2 m}
$$

where \vec{A} is the vector potential that defines the magnetic field $\vec{B}=\vec{\nabla} \times \vec{A}$. Choosing the Landau gauge $\vec{A}=B_{o} x \hat{y}$ for $\vec{B}=B_{o} \hat{z}$, we have

$$
H=\frac{p^{2}}{2 m}-\frac{q B_{o} p_{y}}{m} x+\frac{q^{2} B_{o}^{2}}{2 m} x^{2}
$$

If the particles are constraint to move in the $x-y$ plane, the ansatz

$$
\psi_{p_{y}}=e^{\frac{i p_{y} y}{\hbar}} \phi_{p_{y}}(x), p_{y}=\hbar k_{y}
$$

Eigenstates in B-field in 2D

Define $\ell_{B}^{2} \equiv \frac{\hbar}{q B}, \omega_{c} \equiv \frac{\left|q B_{o}\right|}{m}$ and complete the square

$$
\frac{1}{2 m}\left(p_{x}^{2}+m^{2} \omega_{c}^{2}\left(x-k_{y} \ell_{B}^{2}\right)^{2}\right) \phi_{p_{y}}=E\left(p_{y}\right) \phi_{p_{y}}
$$

This is a harmonic oscillator at $x=k_{y} \ell_{B}^{2}$ with energy levels

$$
E_{n}=\hbar \omega_{c}\left(n+\frac{1}{2}\right)
$$

And the final wave function

$$
\psi_{n, p_{y}}=e^{i k_{y} y} H_{n}\left(x-k_{y} \ell_{B}^{2}\right) e^{-\frac{\left(x-k_{y} \ell_{B}^{2}\right)^{2}}{4 \epsilon_{B}^{2}}}
$$

where H_{n} are the Hermite polynomials. The energy levels (6) are called Landau levels. There are many quantum states for every Landau level i.e. for a given n, every p_{y} corresponds to a state with the same energy E_{n}.

Landau levels in a free electron picture

Eigenstates:
$\psi_{n, p_{y}}=e^{i k_{y} y} H_{n}\left(x-k_{y} \ell_{B}^{2}\right) e^{-\frac{\left(x-k_{y} \ell_{2}^{2}\right)^{2}}{4 e_{B}^{2}}}$

Figure 3: The ground state wave functions with $n=0,3$, and 10 .
Eigenenergies:

$$
E_{n}=\hbar \omega_{c}\left(n+\frac{1}{2}\right)
$$

Landau quantized states:

flux quantum: $\Phi_{0}=h / e$
magnetic length: $l=r / \sqrt{n}=\hbar / e B$
cyclotron frequency: $\omega_{C}=e B / m$

Number of states

Suppose the system is of size $L_{x} \times L_{y}$, then the separation between harmonic oscillators

$$
\Delta x=\Delta k_{y} \ell_{B}^{2}=\left(\frac{2 \pi}{L_{y}}\right) \ell_{B}^{2}
$$

Thus the number of oscillators we can fit into the system

$$
N=\frac{L_{x}}{\Delta x}=\frac{L_{x} L_{y}}{2 \pi \ell_{B}^{2}}
$$

Plugging in $\ell_{B}^{2} \equiv \frac{\hbar}{q B}$ we see that for electrons

$$
N=\frac{q}{\hbar} B L_{x} L_{y}=\frac{B L_{x} L_{y}}{\hbar / e}=\frac{\phi}{\phi_{o}}
$$

Filling LLs in B-field

- LL orbitals become smaller with B, but bigger with n:

B

$$
r=\sqrt{n \hbar / e B}
$$

- Energy of the LLs increases with B and n :

$$
E_{n}=\hbar \omega_{c}(n+1 / 2)=(n+1 / 2) \hbar e B / m
$$

- Energy spacing between LLs increases with B:

$$
E_{n}-E_{n-1}=\hbar \omega_{c}=\hbar e B / m
$$

- Each Landau level holds the exactly same amount of states (electrons), where total number of states in each LL grows with B ($g_{s}=2$ accounts for spin):
$N=g_{s} L_{x} L_{y} / 2 \pi l_{B}^{2}=g_{s} A B / \Phi_{0}=g_{s} \Phi / \Phi_{0}$
- filling factor = number of occupied LLs (below Fermi energy) - total number of electrons n_{ε} devided by number of electrons in a LL (not accountig for degeneracy):

$$
v=h n_{s} / e B
$$

Linking filling of the LLs with transport measurements

Shubnikov de Haas oscillations and Quantum Hall Effect

Shubnikov de Haas oscillations:

Depopulation of the LLs in B-field:

Number of filled (degenerate) LLs: $\frac{n_{s}}{N_{\mathrm{L}}}=\frac{h n_{\mathrm{s}}}{e B} \cdot \frac{1}{g_{\mathrm{s}} g_{\mathrm{v}}}$

Therefore, two consecutive minima obey the expression:

$$
\begin{equation*}
\Delta\left(\frac{1}{B}\right)=\frac{1}{B_{(i+1)}}-\frac{1}{B_{(i)}}=g_{\mathrm{s}} g_{\mathrm{v}} \cdot \frac{e}{h n_{\mathrm{s}}} \tag{2.21}
\end{equation*}
$$

In essence, the Shubnikov-de Haas minima are periodic in $\frac{1}{B}$. Using 2.21, one is also able to make a statement about the charge carrier concentration n_{s} :

$$
\begin{equation*}
n_{\mathrm{s}}=g_{\mathrm{s}} g_{\mathrm{v}} \cdot \frac{e}{h}\left(\frac{1}{B_{(i+1)}}-\frac{1}{B_{i}}\right)^{-1} \tag{2.22}
\end{equation*}
$$

Integer Quantum Hall effect

Early day 2D electron gas (2DEG)

QHE in a 2DEG device:

- Sharply quantized $R_{x y}$ plateaus to units of h / e^{2} - with a precision better than 1 ppm .
- Vanishing $R_{x x}$ in the same regions where $R_{x y}$ quantized.
- Effect independent of shape/size of the sample.
- Observed in many different material platforms (Si MOSFET, GaAs, graphene, ZnO)

Disorder driven localization and delocalization

Disordered broadens LLs:
LL crossection in a realistic sample:

b)

- Disorder broadens LLs, so forming two types of states, localized orbital states in the bulk, and dissipationless edge states, that cannot scatter backwards.
- Confining potential forces LLs to fold upwards at the edges, and cross the Fermi energy, so forming conducting states at the edges with a linear dispersion \rightarrow these give rise to plateaus.

QHE - delocalized chiral 1D edge states

- Formation of chiral 1D edge states at the edges of the device.
- These states represent a novel order and ground states of matter.
- They are topologically protected and their exact quantization $R_{x y}=\left(h / e^{2}\right) / v$ follows from this protection (here $v=3$).
- Number of edge states $=$ Chern number (here $\mathrm{C}=+3$, where + is clockwise and is counterclockwise motion)

Integer Quantum Hall effect

LL and DOS evolution in B-field:

QHE in a 2DEG device:

- Insulating-like state: Quantized $R_{x y}$ plateaus and vanishing $R_{x x}$ appear when E_{F} is inbetween two LLs.
- Increasing B-field spreads the entire LL spectrum, allowing for LL to continuously move through E_{F}.
- $\quad R_{x y}$ plateaus are quantized to the resistance quantum $R_{x y}=\left(h / e^{2}\right) / n$, where n is an integer defined by the number of occupied LLs. An ideal 1D conduction channel carries this resistance.
\rightarrow However non of this yet can explain why such exactly quantized $R_{x y}$ plateaus are formed, and why $R_{x x}$ is vanishing.

Vanishing Rxx of edge states

- Because the edge states move on a constant potential along most of the edge (except at the very contact), and also are protected from backscattering, the longitudinal resistance of these $\mathrm{Rxx}=0 \rightarrow$ they are almost dissipationless.

Quantization of Rxy

From the classical consideration presented earlier, we have already seen from the equipotential lines in Fig.2, that in a strong magnetic field the Hall-voltage is identical to the source-drain voltage $\left(U_{\mathrm{H}}=U_{\mathrm{SD}}\right)$. When the edge channels are solely responsible for charge transport, this result is trivial. Because the edge channel is resistance-free, and therefore there is no voltage drop across the channel, i.e. in Fig. $7 \mu_{1}=\mu_{\mathrm{L}}$ and $\mu_{2}=\mu_{\mathrm{R}}$, and the electrons in the upper channel $\left(\mu_{1}\right)$ move to the right, and in the lower channel $\left(\mu_{2}\right)$ to the left. The entire potential drop occurs only across a very small region, known as the 'hot-spots' (marked with thick lines in Fig. 7). The Hall voltage is then

$$
U_{\mathrm{H}} \equiv U_{y x}=-\frac{1}{e}\left(\mu_{1}-\mu_{2}\right)=-\frac{1}{e}\left(\mu_{\mathrm{L}}-\mu_{\mathrm{R}}\right)=U_{\mathrm{SD}}
$$

Quantization of Rxy

In the following, we will derive the current carried by an edge channel and determine the conductance quanta. In general, the current carried by a charge Q is $I=\langle Q / t\rangle=\langle Q\rangle\langle 1 / t\rangle$. If there are β electrons in an edge channel, then $\langle Q\rangle=-e \beta$. In accordance with the Pauli principal, there cannot be more than one electron having the same energy in a particular location. This extent of this region is given by the de-Broglie wavelength $\lambda=2 \pi / k_{\mathrm{F}}=h / m v_{\mathrm{F}}$. Therefore, the number of electrons that fit in the edge channel of length l is given by $\beta=l / \lambda=$ $l m v_{\mathrm{F}} / h$ (or double as many when spin degeneracy is included). To determine the value of $\langle 1 / t\rangle=\langle v\rangle / l$, we consider the electron velocity along both the edges;

$$
\left\langle\frac{1}{t}\right\rangle=\frac{1}{l}\left\langle v_{\mathrm{LR}}-v_{\mathrm{RL}}\right\rangle
$$

The relationship between $e U_{\mathrm{SD}}=\mu_{\mathrm{L}}-\mu_{\mathrm{R}}$ and the difference of the edge channe velocities is shown in Fig. 10, and is given by

$$
\begin{aligned}
\mu_{\mathrm{L}}-\mu_{\mathrm{R}} & =\frac{1}{2} m\left\langle v_{\mathrm{LR}}^{2}-v_{\mathrm{RL}}^{2}\right\rangle \\
& =\frac{1}{2} m\left\langle\left(v_{\mathrm{LR}}+v_{\mathrm{RL}}\right)\left(v_{\mathrm{LR}}-v_{\mathrm{RL}}\right)\right\rangle \\
& =\frac{1}{2} m 2 v_{\mathrm{F}}\left\langle v_{\mathrm{LR}}-v_{\mathrm{RL}}\right\rangle
\end{aligned}
$$

and with Eqn.(13), the current through an edge channel is then

$$
\begin{equation*}
I=\langle Q\rangle\left\langle\frac{1}{t}\right\rangle=-\frac{e}{h}\left(\mu_{\mathrm{L}}-\mu_{\mathrm{R}}\right)=\frac{e^{2}}{h} U_{\mathrm{SD}}=\frac{e^{2}}{h} U_{\mathrm{H}} \tag{14}
\end{equation*}
$$

The transverse resistance per edge channel is therefore

$$
R_{x y}^{\mathrm{Kanal}}=\frac{U_{H}}{I}=\frac{h}{e^{2}}
$$

Topologically protected edge and localized bulk states

Schematic of a Quantum Hall State:

Band-diagram of edge states:

- Orbital states in the bulk are localized \rightarrow bulk is insulating and a mobility gap is formed (Anderson localization).
- 1D edge states moving in one direction are formed at the edge \rightarrow these are topologically protected, as backscattering is not allowed, resulting in perfectly quantized and dissipation-less states.
- Symmetry protected topological states \rightarrow a topological invariant protects these states and their quantization.

Analyzing the exact QHE - Zeeman splitting of LLs

QHE in a 2DEG device:

Zeemann splitting of the spins:

- $\quad R_{x y}$ plateaus are quantized to the resistance quantum $R_{x y}=\left(h / e^{2}\right) / n$, where n is an integer defined by the number of occupied LLs.
- Each Landau level holds the exactly same amount of states (electrons), where total number of states in each LL grows with B ($g_{s}=2$ accounts for spin):
- $N=g_{s} L_{x} L_{y} / 2 \pi l_{B}^{2}=g_{s} A B / \Phi_{0}=g_{s} \Phi / \Phi_{0}$
- filling factor = number of occupied LLs (below Fermi energy) - total number of electrons n_{s} devided by number of electrons in a LL (not accountig for degeneracy): $v=h n_{s} / e B$

LLs in graphene

Dirac Hamiltonian in B-field:

$$
H=v \vec{\sigma} \cdot(\vec{p}+e \vec{A})
$$

Schroedingers equation:

$$
\hbar v\left(\begin{array}{cc}
0 & k_{x}-\partial_{y}+\frac{e B}{\hbar} y \\
k_{x}+\partial_{y}+\frac{e B}{\hbar} y & 0
\end{array}\right) \phi(y)=E \phi(y)
$$

Ansatz for the wavefunction:

$$
\psi(x, y)=e^{i k_{x} x} \phi(y)
$$

Eigenenergies:

$$
E= \pm \hbar \omega_{c} \sqrt{n} \quad \ell_{B}^{2} \equiv \frac{\hbar}{q B}, \omega_{c} \equiv \frac{\left|q B_{o}\right|}{m}
$$

Quantum Hall effect in graphene

- Clearly an integer QHE with $R_{x y}=\left(h / e^{2}\right) / n$, where n is an integer.
- However, the sequence of LLs is quite different, where $R_{x y}=\left(h / e^{2}\right) / n$ takes values $n=2,6,10$ etc.
- This implies a degeneracy of 4 (spin+valley), and a zero-energy LL, which is not present in normal 2DEGs.

Quantum Hall effect in graphene

- Clearly an integer QHE with $R_{x y}=\left(h / e^{2}\right) / n$, where n is an integer.
- However, the sequence of LLs is quite different, where $R_{x y}=\left(h / e^{2}\right) / n$ takes values $n=2,6,10$ etc.
- This implies a degeneracy of 4 (spin+valley), and a zero-energy LL, which is not present in normal 2DEGs.

Gate control of carrier density

- Energy of the LLs increases with B and $\mathrm{n}: E_{n}=\hbar \omega_{c} \sqrt{n}=\hbar e B \sqrt{n} / m$
- Each Landau level holds the exactly same amount of states (electrons), where total number of states in each $L L$ grows with B ($g_{s}=2$ accounts for spin, $g_{v} \equiv 2$ accounts for valley):
- $N=g_{s} g_{v} L_{x} L_{y} / 2 \pi l_{B}^{2}=g_{s} g_{v} A B / \Phi_{0}=g_{s} g_{v} \Phi / \Phi_{0}$
- filling factor = number of occupied LLs (below Fermi energy) - total number of electrons n_{s} devided by number of electrons in a LL (not accountig for degeneracy):
- $v=h n_{s} / e B$

Landau fan in the n vs. B phase space

- There is a linear dependence of the number of states in one of the LLs N vs. B:
- $N=g_{s} g_{v} L_{x} L_{y} / 2 \pi l_{B}^{2}=g_{s} g_{v} A B / \Phi_{0}=g_{s} g_{v} \Phi / \Phi_{0}$
- For a fixed filling factor v there is a linear dependence of the carrier density in one of the LLs N vs. B:

- $n_{s}(v)=\frac{v e B}{h}$

Room temperature Quantum Hall effect in graphene

Spin and valley splitting at large B

a

- Each Landau level holds the exactly same amount of states (electrons), where total number of states in each $L L$ grows with B ($g_{\underline{s}}=2$ accounts for spin, $g_{\underline{v}}=2$ accounts for valley):
- $N=g_{s} g_{v} L_{x} L_{y} / 2 \pi l_{B}^{2}=g_{s} g_{v} A B / \Phi_{0}=g_{s} g_{v} \Phi / \Phi_{0}$
- $\quad \underline{\text { illing }}$ factor $=$ number of occupied LLs (below Fermi energy) - total number of electrons n_{s} devided by number of electrons in a LL (not accountig for degeneracy):
- $v=h n_{s} / e B$
- Spin and valley degeneracies are lifted at large B-field due to Zeeman splitting and electron-electron interactions.

Zero electron mass and Berry curvature in graphene

- The location of $1 / B$ for the nth minimum (maximum) of Rxx, counting from $B=B F$, plotted against $n(n+1 / 2)$
$\Delta R_{x x}=R(B, T) \cos \left[2 \pi\left(B_{\mathrm{F}} / B+1 / 2+\beta\right)\right]$
- $\mathrm{B}_{\mathrm{F}}=$ Shubnikov-de Haas Oscillation Frequency in 1/B
- Intercept (upper inset) = Berry's phase
- Aquired when quasiparticle moves between sublattices

Real-space wave-functions and pseudo-spin texture

Real space wave-functions:

Visualizing pseudo-spin textures

Rotating the k-vector in real space:

180°

540°

Pseudo-spin textures in k-space:

Berry's phase of π and non-trivial topological properties.

Berry curvature in graphene

Pseudo-spin textures in k-space:

Trajectories around Dirac point in k-space:

Dirac points are Berry curvature monopoles

$$
\begin{gathered}
\Omega(k)=\nabla \times \mathcal{A} \\
C=\frac{1}{2 \pi} \oint_{\mathrm{BZ}} \Omega d k^{2}=v
\end{gathered}
$$

