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Outline - Lecture 7

Reminder about the Landau Level quantization and the Quantum Hall Effect.

Consequences of the Dirac equation:

- Relativistic Quantum Hall effect in graphene

- Landau Fan diagram
- Zeeman splitting and QH ferromagnetism

- T-Berry’s phase
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Quantum oscillations

* Orbitsin k-space are always in planes perpendicular to B.

* The electronic density of states at the Fermi energy E. determines most of a metal’s
properties. Therefore there are many types of quantum oscillations with the
magnetic field.

* Therefore the metal's properties (which depend on the energy level density of states

at E;) will oscillate as B changes, with a period given by:
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Large B-fields — Quantum Hall effect

Hall effect measurement scheme:
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Lorentz force is balanced by electric force: e(v x B) = eE

Current: / = neAv (n — carrier density, A - area, v — drift velocity)

Hall voltage: V\,, = Ew = IB/net (t = 1 in 2D)

Hall resistance: R,, = V,/I= B/net (t = 1 in 2D)

resistivity p

resistivity p

Small B:
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Free electron in a B-field
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where A is the vector potential that defines the magnetic field B =V x A.
Choosing the Landau gange A = B,xy for B = B,%. we have
2
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If the particles are constraint to move in the x — y plane, the ansatz

pyy
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Figenstates in B-field in 2D

2 — b _ |¢B
Define (2, = 2w, = 1Pl and complete the square
qB m
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This is a harmonic oscillator at = = k,(% with energy levels

1
E‘n. — h*"‘-"c(” + 5)

And the final wave function
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where H, are the Hermite polynomials. The energy levels (6) are called
Landau levels. There are many quantum states for every Landau level i.e.
for a given n, every p, corresponds to a state with the same energy £,,.
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Landau levels in a free electron picture

Eigenstates: Landau quantized states:
 (z—kytH)?
Unp, = (‘“"y”H,,(.z' — /1',//?3)(" 405 LLandaIu 1=1 +
: evels
1= O
heB .
m | 1=0 A
Figure 3: The ground state wave functions with n = 0, 3. and 10. 'y Bpo
| . - 1=0 =
Eigenenergies:
1
E, = hw.(n + 3)
- flux quantum: @, = h/e
A magnetic length: 1 = r/+/n = h/eB
|
g(E) cyclotron frequency: w, = eB/m
Ef —s
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Number of states

Suppose the system is of size L, X L,, then the separation between harmonic
oscillators

N AL 2 2T o

Ar = Qkylp = (L_){])’

Y

Thus the number of oscillators we can fit into the system

\,. o Ll‘ . LJ-Ly
‘ Az 2?(%
T 2 — _h R, , ' alact ren o
Plugging in (4 = o5 We sec that for electrons
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Filling LLs in B-field

LL orbitals become smaller with B, but bigger with n:

r =+ nh/eB

Energy of the LLs increases with B and n:

E,=hw.(n+1/2) = (n + 1/2) heB/m

Energy spacing between LLs increases with B:

E, —E,_{ =hw.,=heB/m

Each Landau level holds the exactly same amount of
states (electrons), where total number of states in each LL
grows with B (g. = 2 accounts for spin):

N = gsLxLy/ZT[llzi’ = gsAB/®y = gsP /P,

filling factor = number of occupied LLs (below Fermi
energy) - total number of electrons n. devided by number

of electronsina Ll (notaccountig for degeneracy):

v = hn,/eB
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Linking filling of the LLs with transport measurements

—  p,, (h/e*)
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Shubnikov de Haas oscillations and Quantum Hall Effect

Shubnikov de Haas oscillations:

Depopulation of the LLs in B-field:
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Therefore, two consecutive minima obey the expression:
1 1 1
B B(‘+1) B(!) h'n.s

In essence, the Shubnikov-de Haas minima are periodic in % Using 2.21, one is also able

to make a statement about the charge carrier concentration ng:

s = Gagv * (2.22)
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Integer Quantum Hall effect

Early day 2D electron gas (2DEG) QHE ina 2DEG device:
device:
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* Sharply quantized R,, plateaus to units of h/e’ — with a precision better than 1ppm.
* Vanishing R,,in the same regions where R, quantized.
» Effect independent of shape/size of the sample.

* Observed in many different material platforms (Si MOSFET, GaAs, graphene, ZnO)
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Disorder driven localization and delocalization

Disordered broadens L Ls:

L crossection in a realistic sample:

Potential
Fluktuationen
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e Disorder broadens LLs, so forming two types of states, localized

a)

(4] C I ]
orbital states in the bulk, and dissipationless edge states, that —® - o _:
cannot scatter backwards. 4 (%) -~
— 'y [5)
° o .
* Confining potential forces LLs to fold upwards at the edges, and o ° o
cross the Fermi energy, so forming conducting states at the o ® —
edges with a linear dispersion = these give rise to plateaus.
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QHE — delocalized chiral 1D edge states

* Formation of chiral 1D edge states at the edges of the device.
* These states represent a novel order and ground states of matter.

* They are topologically protected and their exact quantization R, = (h/e?)/v
follows from this protection (here v = 3).

* Number of edge states = Chern number (here C = +3, where + is clockwise and —
is counterclockwise motion)
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Integer Quantum Hall effect

LL and DOS evolution in B-field:

Increasing B
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QHE ina 2DEG device:
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* Insulating-like state: Quantized R,, plateaus and vanishing R,, appear when E, is inbetween two LLs.

* Increasing B-field spreads the entire LL spectrum, allowing for LL to continuously move through E. .

* R, plateaus are quantized to the resistance quantum R, = (h/e?)/n, where n is an integer defined
by the number of occupied LLs. An ideal 1D conduction channel carries this resistance.

- However non of this yet can explain why such exactly quantized R,, plateaus are formed, and why

R, is vanishing.
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Vanishing Rxx of edge states

* Because the edge states move on a constant potential along most of the edge
(except at the very contact), and also are protected from backscattering, the
longitudinal resistance of these Rxx = 0 = they are almost dissipationless.
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Quantization of Rxy

| |
|UI
SD
From the classical consideration presented earlier, we have already seen from
the equipotential lines in Fig.2, that in a strong magnetic field the Hall-voltage
is identical to the source-drain voltage (Uy = Ugp). When the edge channels
are solely responsible for charge transport, this result is trivial. Because the edge
channel is resistance-free, and therefore there is no voltage drop across the channel,
i.e. in Fig. 7 p1 = py, and o = pR, and the electrons in the upper channel (j1)
move to the right, and in the lower channel (y9) to the left. The entire potential
drop occurs only across a very small region, known as the ‘hot-spots’ (marked
with thick lines in Fig. 7). The Hall voltage is then
1 i

Uy =80, = _E(“l = ) = —;U.f-L — pr) = Usp
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Quantization of Rxy

In the following, we will derive the current carried by an edge channel and
determine the conductance quanta. In general, the current carried by a charge @)
is I = (Q/t) = (Q)(1/t). If there are /3 electrons in an edge channel, then
(Q) = —ef3. In accordance with the Pauli principal, there cannot be more than one
electron having the same energy in a particular location. This extent of this region
is given by the de-Broglie wavelength A\ = 27w /kp = h/muvp. Therefore, the
number of electrons that fit in the edge channel of length [ is given by 3 = [/A =
Imwvg /h (or double as many when spin degeneracy is included). To determine the
value of (1/t) = (v) /. we consider the electron velocity along both the edges;

<%> — % (VLR — VRL)

edge channels

s
The relationship between eUsp = pu1, — pur and the difference of the edge channe . \\
velocities is shown in Fig. 10, and is given by / \\\
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and with Eqn.(13), the current through an edge channel is then

Tyl it ') e o= & (14)
— ’ — = ——\ur — I —— = — it}
: iy HL — KR, j, OSD = 3 YH .
The transverse resistance per edge channel is therefore
U h
Kanal H
RI;na - I - F)_g
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Topologically protected edge and localized bulk states

Schematic of a Quantum Hall State:

Y right-moving skipping orbit
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™ left-moving skipping orbit

Band-diagram of edge states:

= Conduction Band

insulator n=0
(a) (b)
AANANAA Ef

Quantum Hall

State n=1

Valenc? Band
x/a 0 K n'a

* Orbital states in the bulk are localized = bulk is insulating and a mobility gap is formed (Anderson localization).

* 1D edge states moving in one direction are formed at the edge = these are topologically protected, as back-
scattering is not allowed, resulting in perfectly quantized and dissipation-less states.

* Symmetry protected topological states = a topological invariant protects these states and their quantization.
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Analyzing the exact QHE — Zeeman splitting of LLs

QHE ina 2DEG device: /eemann splitting of the spins:
SV W Y <
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* R, plateaus are quantized to the resistance quantum R, = (h/e?)/n, where n is an
integer defined by the number of occupied LLs.

e Fach landau level holds the exactly same amount of states (electrons), where total
number of states in each LL grows with B (g =2 accounts for spin):
* N =gsL,Ly,/2mlg = gAB/ Py = gsP /Py

 filling factor = number of occupied LLs (below Fermi energy) - total number of
electrons n, _devided by number of electrons ina LL (not accountig for
degeneracy): v = hng/eB

Dmitri K. Efetov @

Chair of Experimental
Sclid State Physics




LLs in graphene

Dirac Hamiltonian in B-field:

—

H=v5-(p+eA)

Schroedingers equation:

0 kx—(‘?y—l—%y
+ 0y + Ly 0

) o(y) = Ed(y)

Ansatz for the wavefunction:

P(z,y) = e "¢ (y)

tigenenergies:

— e 12 — h FiAl [ lqBo
E—__h(.&)c\/ﬁ [B:q—B.wC: |
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Quantum Hall effect in graphene
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* Clearly an integer QHE with R, = (h/e?)/n, where n is an integer.

* However, the sequence of LLs is quite different, where Ry = (h/e?)/n takes values n = 2, 6, 10 etc.

Magnetic Flux Density [T]

* Thisimplies a degeneracy of 4 (spin+valley), and a zero-energy LL, which is not present in normal 2DEGs.
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Quantum Hall effect in graphene
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* Clearly an integer QHE with R, = (h/e?)/n, where n is an integer.
* However, the sequence of LLs is quite different, where Ry = (h/e?)/n takes values n = 2, 6, 10 etc.

* Thisimplies a degeneracy of 4 (spin+valley), and a zero-energy LL, which is not present in normal 2DEGs.
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Gate control of carrier density

) ¥y

-80 -60 -40 -20 0 20 40 60 80
Vy (V)

Energy of the LLs increases with Band n: E,= hw./n= heByn/m

Each Landaulevel holds the exactly same amount of states (electrons), where total number of states
in each LL grows with B (g_=2 accounts for spin, g,=2 accounts for valley):

N = gs9yLyLy/21lg = g59,AB/ Py = 959, P/ Py

filling factor = number of occupied LLs (below Fermi energy) - total number of electrons n. devided
by number of electronsina Ll (not accountig for degeneracy):
v = hng/eB
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Landau fan in the nvs. B phase space

-40 -30 -20 -10 0 'I;D 20 30 40

Ve (V)

There is a linear dependence of the number of states in

one of the [ L s N vs. B: Increasing B
E=0

(a) [k {C]

N = gs9yLyLy/21lg = gs9,AB/ Py = 959, P/ Py

For a fixed filling factor v there is a linear dependence of
the carrier density in one of the [ L s N vs. B:
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Room temperature Quantum Hall effect in graphene
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Spin and valley splitting at large B

a Ve (V)
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Filling factor, v

Filling factor, v

Each Landaulevel holds the exactly same amount of states (electrons), where total number of states

in each LL grows with B (g_=2 accounts for spin, g =2 accounts for valley):

N = gs9yLyLy/21lg = gs9,AB/ Py = 959, P/ Py

filling factor = number of occupied LLs (below Fermi energy) - total number of electrons n._devided

by number of electronsina Ll (not accountig for degeneracy):
v = hng/eB

Spin and valley degeneracies are lifted at large B-field due to Zeeman splitting and electron-electron
interactions.
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Zero electron mass and Berry curvature in graphene

* The location of 1/B for the AR, = R(B, T)cos[2x(Bg/B+1/2 + )]
nth minimum (maximum) of
Rxx, counting from B=BF,

plotted against n(n +1/2) * By = Shubnikov-de Haas
Oscillation Frequency in 1/B

* Slope (lower inset) =BF
* B = Berry Phase

* Intercept (upper inset) =

Berry’s phase * Aquired when quasiparticle

moves between sublattices
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Landau index n
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Real-space wave-functions and pseudo-spin texture

Real space wave-functions:

K': k]||-x K: k||-x K: K]||x
N bonding anti-bonding 4 4 & a 0,8,0,8,
orbitals orbitals

bonding
orbitals

“ -

boﬁ&ﬁg
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Visualizing pseudo-spin textures

Rotating the k-vector in real space:
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Pseudo-spin textures in k-space:

Berry curvature in graphene
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Dirac points are Berry
curvature monopoles
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Trajectories around Dirac point in k-space:
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