Chair of Experimental Solid State Physics, LMU Munich

<u>"Introduction to Graphene</u> and 2D Materials"

- Reminder about the Landau Level quantization and the Quantum Hall Effect.
- Consequences of the Dirac equation:
 - Relativistic Quantum Hall effect in graphene
 - Landau Fan diagram
 - Zeeman splitting and QH ferromagnetism
 - π-Berry's phase

Quantum oscillations

- Orbits in k-space are always in planes perpendicular to B.
- The electronic density of states at the Fermi energy E_F determines most of a metal's properties. Therefore there are many types of quantum oscillations with the magnetic field.
- Therefore the metal's properties (which depend on the energy level density of states at E_F) will oscillate as B changes, with a period given by:

Large B-fields – Quantum Hall effect

Lorentz force is balanced by electric force: $e(v \times B) = eE$

<u>Current</u>: *I* = *neAv* (*n* – carrier density, A - area, v – drift velocity)

<u>Hall voltage:</u> $V_H = Ew = IB/net$ (t = 1 in 2D)

<u>Hall resistance:</u> $R_{xy} = V_H/I = B/net$ (t = 1 in 2D)

$$H = \frac{\pi^2}{2m} = \frac{(\vec{p} - q\vec{A})^2}{2m}$$

where \vec{A} is the vector potential that defines the magnetic field $\vec{B} = \vec{\nabla} \times \vec{A}$. Choosing the Landau gauge $\vec{A} = B_o x \hat{y}$ for $\vec{B} = B_o \hat{z}$, we have

$$H = \frac{p^2}{2m} - \frac{qB_o p_y}{m}x + \frac{q^2 B_o^2}{2m}x^2$$

If the particles are constraint to move in the x - y plane, the ansatz

$$\psi_{p_y} = e^{\frac{ip_y y}{\hbar}} \phi_{p_y}(x), \ p_y = \hbar k_y$$

Define $\ell_B^2 \equiv \frac{\hbar}{qB}$, $\omega_c \equiv \frac{|qB_o|}{m}$ and complete the square

$$\frac{1}{2m} \left(p_x^2 + m^2 \omega_c^2 (x - k_y \ell_B^2)^2 \right) \phi_{p_y} = E(p_y) \phi_{p_y}$$

This is a harmonic oscillator at $x = k_y \ell_B^2$ with energy levels

$$E_n = \hbar\omega_c (n + \frac{1}{2})$$

And the final wave function

$$\psi_{n,p_y} = e^{ik_y y} H_n(x - k_y \ell_B^2) e^{-\frac{(x - k_y \ell_B^2)^2}{4\ell_B^2}}$$

where H_n are the Hermite polynomials. The energy levels (6) are called *Landau levels*. There are many quantum states for every Landau level i.e. for a given n, every p_y corresponds to a state with the same energy E_n .

Landau levels in a free electron picture

Eigenstates:

Figure 3: The ground state wave functions with n = 0, 3, and 10.

Eigenenergies:

$$E_n = \hbar\omega_c (n + \frac{1}{2})$$

Landau quantized states:

flux quantum: $\Phi_0 = h/e$ magnetic length: $l = r/\sqrt{n} = \hbar/eB$ cyclotron frequency: $\omega_c = eB/m$

Suppose the system is of size $L_x \times L_y$, then the separation between harmonic oscillators

$$\Delta x = \Delta k_y \ell_B^2 = \left(\frac{2\pi}{L_y}\right) \ell_B^2$$

Thus the number of oscillators we can fit into the system

$$N = \frac{L_x}{\Delta x} = \frac{L_x L_y}{2\pi \ell_B^2}$$

Plugging in $\ell_B^2 \equiv \frac{\hbar}{qB}$ we see that for electrons

$$N = \frac{q}{\hbar} B L_x L_y = \frac{B L_x L_y}{\hbar/e} = \frac{\phi}{\phi_o}$$

Filling LLs in B-field

• <u>LL orbitals become smaller with B, but bigger with n</u>:

- $r = \sqrt{n\hbar/eB}$
- Energy of the LLs increases with B and n:

 $E_n = \hbar \omega_c (n + 1/2) = (n + 1/2) \hbar eB/m$

• Energy spacing between LLs increases with B:

 $E_n - E_{n-1} = \hbar \omega_c = \hbar e B / m$

• Each Landau level holds the exactly same amount of states (electrons), where total number of states in each LL grows with B ($g_s = 2$ accounts for spin):

$$N = g_s L_x L_y / 2\pi l_B^2 = g_s AB / \Phi_0 = g_s \Phi / \Phi_0$$

 filling factor = number of occupied LLs (below Fermi energy) - total number of electrons n_s devided by number of electrons in a LL (not accountig for degeneracy):

 $v = hn_s/eB$

Linking filling of the LLs with transport measurements

Shubnikov de Haas oscillations and Quantum Hall Effect

Shubnikov de Haas oscillations:

Number of filled (degenerate) LLs: $\frac{n_s}{N_{\rm L}} = \frac{hn_{\rm s}}{eB} \cdot \frac{1}{g_{\rm s}g_{\rm v}}$

Therefore, two consecutive minima obey the expression:

$$\Delta\left(\frac{1}{B}\right) = \frac{1}{B_{(i+1)}} - \frac{1}{B_{(i)}} = g_{\rm s}g_{\rm v} \cdot \frac{e}{hn_{\rm s}}$$

$$(2.21)$$

In essence, the Shubnikov-de Haas minima are periodic in $\frac{1}{B}$. Using 2.21, one is also able to make a statement about the charge carrier concentration n_s :

$$n_{\rm s} = g_{\rm s} g_{\rm v} \cdot \frac{e}{h} \left(\frac{1}{B_{(i+1)}} - \frac{1}{B_i} \right)^{-1} \tag{2.22}$$

Depopulation of the LLs in B-field:

Integer Quantum Hall effect

- Sharply quantized R_{xy} plateaus to units of h/e^2 with a precision better than 1ppm.
- Vanishing R_{xx} in the same regions where R_{xy} quantized.
- Effect independent of shape/size of the sample.

Dmitri K. Efetov

• Observed in many different material platforms (Si MOSFET, GaAs, graphene, ZnO)

Disorder driven localization and delocalization

LL crossection in a realistic sample:

Disorder broadens LLs, so forming two types of states, localized ٠ orbital states in the bulk, and dissipationless edge states, that cannot scatter backwards.

Confining potential forces LLs to fold upwards at the edges, and ٠ cross the Fermi energy, so forming conducting states at the edges with a linear dispersion \rightarrow these give rise to plateaus.

QHE – delocalized chiral 1D edge states

- Formation of chiral 1D edge states at the edges of the device.
- These states represent a novel order and ground states of matter.
- They are topologically protected and their exact quantization $R_{xy} = (h/e^2)/v$ follows from this protection (here v = 3).
- Number of edge states = Chern number (here C = +3, where + is clockwise and is counterclockwise motion)

QHE in a 2DEG device:

- <u>Insulating-like state</u>: Quantized R_{xy} plateaus and vanishing R_{xx} appear when E_F is inbetween two LLs.
- Increasing B-field spreads the entire LL spectrum, allowing for LL to continuously move through E_F .
- R_{xy} plateaus are quantized to the resistance quantum $R_{xy} = (h/e^2)/n$, where n is an integer defined by the number of occupied LLs. An ideal 1D conduction channel carries this resistance.
- → However non of this yet can explain why such exactly quantized R_{xy} plateaus are formed, and why R_{xx} is vanishing.

Vanishing Rxx of edge states

 Because the edge states move on a constant potential along most of the edge (except at the very contact), and also are protected from backscattering, the longitudinal resistance of these Rxx = 0 → they are almost dissipationless.

Quantization of Rxy

From the classical consideration presented earlier, we have already seen from the equipotential lines in Fig.2, that in a strong magnetic field the Hall-voltage is identical to the source-drain voltage ($U_{\rm H} = U_{\rm SD}$). When the edge channels are solely responsible for charge transport, this result is trivial. Because the edge channel is resistance-free, and therefore there is no voltage drop across the channel, i.e. in Fig. 7 $\mu_1 = \mu_{\rm L}$ and $\mu_2 = \mu_{\rm R}$, and the electrons in the upper channel (μ_1) move to the right, and in the lower channel (μ_2) to the left. The entire potential drop occurs only across a very small region, known as the 'hot-spots' (marked with thick lines in Fig. 7). The Hall voltage is then

$$U_{\rm H} \equiv U_{yx} = -\frac{1}{e}(\mu_1 - \mu_2) = -\frac{1}{e}(\mu_{\rm L} - \mu_{\rm R}) = U_{\rm SD}$$

Quantization of Rxy

In the following, we will derive the current carried by an edge channel and determine the conductance quanta. In general, the current carried by a charge Q is $I = \langle Q/t \rangle = \langle Q \rangle \langle 1/t \rangle$. If there are β electrons in an edge channel, then $\langle Q \rangle = -e\beta$. In accordance with the Pauli principal, there cannot be more than one electron having the same energy in a particular location. This extent of this region is given by the de-Broglie wavelength $\lambda = 2\pi/k_{\rm F} = h/mv_{\rm F}$. Therefore, the number of electrons that fit in the edge channel of length l is given by $\beta = l/\lambda = lmv_{\rm F}/h$ (or double as many when spin degeneracy is included). To determine the value of $\langle 1/t \rangle = \langle v \rangle /l$, we consider the electron velocity along both the edges;

$$\left\langle \frac{1}{t} \right\rangle = \frac{1}{l} \left\langle v_{\rm LR} - v_{\rm RL} \right\rangle$$

The relationship between $eU_{SD} = \mu_L - \mu_R$ and the difference of the edge channe velocities is shown in Fig.10, and is given by

$$\mu_{\rm L} - \mu_{\rm R} = \frac{1}{2} m \left\langle v_{\rm LR}^2 - v_{\rm RL}^2 \right\rangle$$
$$= \frac{1}{2} m \left\langle (v_{\rm LR} + v_{\rm RL})(v_{\rm LR} - v_{\rm RL}) \right\rangle$$
$$= \frac{1}{2} m 2 v_{\rm F} \left\langle v_{\rm LR} - v_{\rm RL} \right\rangle$$

and with Eqn.(13), the current through an edge channel is then

$$I = \langle Q \rangle \left\langle \frac{1}{t} \right\rangle = -\frac{e}{h} (\mu_{\rm L} - \mu_{\rm R}) = \frac{e^2}{h} U_{\rm SD} = \frac{e^2}{h} U_{\rm H}$$
(14)

The transverse resistance per edge channel is therefore

$$R_{xy}^{\text{Kanal}} = \frac{U_H}{I} = \frac{h}{e^2}$$

ne $(k_{RL} - k_{LR})/2$

Topologically protected edge and localized bulk states

<u>Schematic of a Quantum Hall State:</u>

Band-diagram of edge states:

- Orbital states in the bulk are localized \rightarrow bulk is insulating and a mobility gap is formed (Anderson localization).
- 1D edge states moving in one direction are formed at the edge → these are topologically protected, as back-scattering is not allowed, resulting in perfectly quantized and dissipation-less states.
- Symmetry protected topological states \rightarrow a topological invariant protects these states and their quantization.

Analyzing the exact QHE – Zeeman splitting of LLs

- R_{xy} plateaus are quantized to the resistance quantum $R_{xy} = (h/e^2)/n$, where n is an integer defined by the number of occupied LLs.
- Each Landau level holds the exactly same amount of states (electrons), where total number of states in each LL grows with B ($g_s = 2$ accounts for spin):
- $N = g_s L_x L_y / 2\pi l_B^2 = g_s AB / \Phi_0 = g_s \Phi / \Phi_0$
- filling factor = number of occupied LLs (below Fermi energy) total number of electrons n_s devided by number of electrons in a LL (not accountig for degeneracy): $v = hn_s/eB$

LLs in graphene

Dirac Hamiltonian in B-field:

$$H = v\vec{\sigma}\cdot(\vec{p} + e\vec{A})$$

Schroedingers equation:

$$\hbar v \begin{pmatrix} 0 & k_x - \partial_y + \frac{eB}{\hbar}y \\ k_x + \partial_y + \frac{eB}{\hbar}y & 0 \end{pmatrix} \phi(y) = E\phi(y)$$

Ansatz for the wavefunction:

 $\psi(x,y) = e^{ik_x x} \phi(y)$

Eigenenergies:

 $E = \pm \hbar \omega_c \sqrt{n}$

 $\ell_B^2 \equiv \frac{\hbar}{qB}, \ \omega_c \equiv \frac{|qB_o|}{m}$

Quantum Hall effect in graphene

• Clearly an integer QHE with $R_{xy} = (h/e^2)/n$, where n is an integer.

- However, the sequence of LLs is quite different, where $R_{xy} = (h/e^2)/n$ takes values n = 2, 6, 10 etc.
- This implies a degeneracy of 4 (spin+valley), and a zero-energy LL, which is not present in normal 2DEGs.

Quantum Hall effect in graphene

• Clearly an integer QHE with $R_{xy} = (h/e^2)/n$, where n is an integer.

- However, the sequence of LLs is quite different, where $R_{xy} = (h/e^2)/n$ takes values n = 2, 6, 10 etc.
- This implies a degeneracy of 4 (spin+valley), and a zero-energy LL, which is not present in normal 2DEGs.

Gate control of carrier density

- Energy of the LLs increases with B and n: $E_n = \hbar \omega_c \sqrt{n} = \hbar e B \sqrt{n} / m$
- Each Landau level holds the exactly same amount of states (electrons), where total number of states in each LL grows with B ($g_s = 2$ accounts for spin, $g_v = 2$ accounts for valley):
- $N = g_s g_v L_x L_y / 2\pi l_B^2 = g_s g_v A B / \Phi_0 = g_s g_v \Phi / \Phi_0$
- <u>filling factor = number of occupied LLs (below Fermi energy) total number of electrons n_s devided by number of electrons in a LL (not accountig for degeneracy):</u>
- $v = hn_s/eB$

Landau fan in the n vs. B phase space

- There is a linear dependence of the number of states in one of the LLs N vs. B:
- $N = g_s g_v L_x L_y / 2\pi l_B^2 = g_s g_v A B / \Phi_0 = g_s g_v \Phi / \Phi_0$
- For a fixed filling factor v there is a linear dependence of the carrier density in one of the LLs N vs. B:

• $n_s(v) = \frac{veB}{h}$

Room temperature Quantum Hall effect in graphene

Spin and valley splitting at large B

- Each Landau level holds the exactly same amount of states (electrons), where total number of states in each LL grows with B ($g_s = 2$ accounts for spin, $g_v = 2$ accounts for valley):
- $N = g_s g_v L_x L_y / 2\pi l_B^2 = g_s g_v AB / \Phi_0 = g_s g_v \Phi / \Phi_0$
- filling factor = number of occupied LLs (below Fermi energy) total number of electrons n_s devided by number of electrons in a LL (not accountig for degeneracy):
- $v = hn_s/eB$
- Spin and valley degeneracies are lifted at large B-field due to Zeeman splitting and electron-electron interactions.

Zero electron mass and Berry curvature in graphene

- The location of 1/B for the nth minimum (maximum) of Rxx, counting from B=BF, plotted against n(n +1/2)
- Slope (lower inset) =BF
- Intercept (upper inset) = Berry's phase

 $\Delta R_{xx} = R(B, T) \cos[2\pi (B_{\rm F}/B + 1/2 + \beta)]$

- B_F = Shubnikov-de Haas Oscillation Frequency in 1/B
- β = Berry Phase
- Aquired when quasiparticle moves between sublattices

Real-space wave-functions and pseudo-spin texture

Real space wave-functions:

Visualizing pseudo-spin textures

Rotating the k-vector in real space:

Berry curvature in graphene

<u>Pseudo-spin textures in k-space:</u>

Trajectories around Dirac point in k-space:

Dirac points are Berry curvature monopoles

$$\Omega(k) = \nabla imes \mathcal{A}$$

$$C = \frac{1}{2\pi} \oint_{BZ} \Omega dk^2 = v$$

