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Outline - Lecture 7

• Reminder about the Landau Level quantization and the Quantum Hall Effect.

• Consequences of the Dirac equation:

- Relativistic Quantum Hall effect in graphene
- Landau Fan diagram
- Zeeman splitting and QH ferromagnetism
- π-Berry’s phase
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• Orbits in k-space are always in planes perpendicular to B.

• The electronic density of states at the Fermi energy EF determines most of a metal’s
properties. Therefore there are many types of quantum oscillations with the         
magnetic field.

• Therefore the metal's properties (which depend on the energy level density of states 
at EF) will oscillate as B changes, with a period given by:

Quantum oscillations

Δ
ℏ
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Large B-fields – Quantum Hall effect

Lorentz force is balanced by electric force: e(v x B) = eE

Current: I = neAv (n – carrier density, A - area, v – drift velocity) 

Hall voltage: VH = Ew = IB/net (t = 1 in 2D)

Hall resistance: Rxy = VH/I= B/net (t = 1 in 2D)

Small B:

Large B:

Hall effect measurement scheme:
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Free electron in a B-field
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Eigenstates in B-field in 2D
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Landau levels in a free electron picture

Eigenenergies:

Eigenstates:

flux quantum: 

magnetic length: 

cyclotron frequency: 

Landau quantized states:



Dmitri K. Efetov

Number of states
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Filling LLs in B-field

B

• LL orbitals become smaller with B, but bigger with n:    

• Energy of the LLs increases with B and n:

=

• Energy spacing between LLs increases with B:

=

• Each Landau level holds the exactly same amount of 
states (electrons), where total number of states in each LL
grows with B (gs = 2 accounts for spin):

• filling factor = number of  occupied LLs (below Fermi 
energy) - total number of electrons ns devided by number 
of electrons in a LL (not accountig for degeneracy):
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Linking filling of the LLs with transport measurements
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Shubnikov de Haas oscillations and Quantum Hall Effect

Shubnikov de Haas oscillations: Depopulation of the LLs in B-field:
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Integer Quantum Hall effect

Early day 2D electron gas (2DEG) 
device:

QHE in a 2DEG device:

• Sharply quantized Rxy plateaus to units of h/e2 – with a precision better than 1ppm.

• Vanishing Rxx in the same regions where Rxy quantized. 

• Effect independent of shape/size of the sample.

• Observed in many different material platforms (Si MOSFET, GaAs, graphene, ZnO)
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Disorder driven localization and delocalization

LL crossection in a realistic sample:Disordered broadens LLs:

• Disorder broadens LLs, so forming two types of states, localized 
orbital states in the bulk, and dissipationless edge states, that 
cannot scatter backwards. 

• Confining potential forces LLs to fold upwards at the edges, and 
cross the Fermi energy, so forming conducting states at the 
edges with a linear dispersion  these give rise to plateaus.
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QHE – delocalized chiral 1D edge states

• Formation of chiral 1D edge states at the edges of the device.

• These states represent a novel order and ground states of matter.

• They are topologically protected and their exact quantization Rxy = (h/e2)/ν
follows from this protection (here ν = 3).

• Number of edge states = Chern number (here C = +3, where + is clockwise and –
is counterclockwise motion)
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QHE in a 2DEG device:LL and DOS evolution in B-field:

• Insulating-like state: Quantized Rxy plateaus and vanishing Rxx appear when EF is inbetween two LLs. 

• Increasing B-field spreads the entire LL spectrum, allowing for LL to continuously move through EF . 

• Rxy plateaus are quantized to the resistance quantum Rxy = (h/e2)/n, where n is an integer defined 
by the number of occupied LLs. An ideal 1D conduction channel carries this resistance.

 However non of this yet can explain why such exactly quantized Rxy plateaus are formed, and why 
Rxx is vanishing.

Integer Quantum Hall effect
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Vanishing Rxx of edge states

• Because the edge states move on a constant potential along most of the edge 
(except at the very contact), and also are protected from backscattering, the 
longitudinal resistance of these Rxx = 0  they are almost dissipationless.
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Quantization of Rxy
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Quantization of Rxy
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Topologically protected edge and localized bulk states

• Orbital states in the bulk are localized  bulk is insulating and a mobility gap is formed (Anderson localization).

• 1D edge states moving in one direction are formed at the edge  these are topologically protected, as back-
scattering is not allowed, resulting in perfectly quantized and dissipation-less states.

• Symmetry protected topological states  a topological invariant protects these states and their quantization. 

Schematic of a Quantum Hall State: Band-diagram of edge states:
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Analyzing the exact QHE – Zeeman splitting of LLs
QHE in a 2DEG device:

• Rxy plateaus are quantized to the resistance quantum Rxy = (h/e2)/n, where n is an 
integer defined by the number of occupied LLs.

• Each Landau level holds the exactly same amount of states (electrons), where total 
number of states in each LL grows with B (gs = 2 accounts for spin):

• 𝑁 = 𝑔 𝐿 𝐿 2π𝑙 = 𝑔 𝐴𝐵 𝛷⁄ = 𝑔 𝛷 𝛷⁄⁄

• filling factor = number of  occupied LLs (below Fermi energy) - total number of 
electrons ns devided by number of electrons in a LL (not accountig for 
degeneracy): 𝜈 = ℎ𝑛 𝑒𝐵⁄

Zeemann splitting of the spins:
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LLs in graphene
Dirac Hamiltonian in B-field:

Schroedingers equation:

Ansatz for the wavefunction:

Eigenenergies:
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Quantum Hall effect in graphene

• Clearly an integer QHE with Rxy = (h/e2)/n, where n is an integer.

• However, the sequence of LLs is quite different, where Rxy = (h/e2)/n takes values n = 2, 6, 10 etc. 

• This implies a degeneracy of 4 (spin+valley), and a zero-energy LL, which is not present in normal 2DEGs.
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Quantum Hall effect in graphene

• Clearly an integer QHE with Rxy = (h/e2)/n, where n is an integer.

• However, the sequence of LLs is quite different, where Rxy = (h/e2)/n takes values n = 2, 6, 10 etc. 

• This implies a degeneracy of 4 (spin+valley), and a zero-energy LL, which is not present in normal 2DEGs.
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Gate control of carrier density

• Energy of the LLs increases with B and n: =

• Each Landau level holds the exactly same amount of states (electrons), where total number of states 
in each LL grows with B (gs = 2 accounts for spin, gv =2 accounts for valley):

•

• filling factor = number of  occupied LLs (below Fermi energy) - total number of electrons ns devided 
by number of electrons in a LL (not accountig for degeneracy):

•
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Landau fan in the n vs. B phase space

• There is a linear dependence of the number of states in 
one of the LLs N vs. B:

•

• For a fixed filling factor v there is a linear dependence of 
the carrier density in one of the LLs N vs. B:

•
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Room temperature Quantum Hall effect in graphene
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Spin and valley splitting at large B

• Each Landau level holds the exactly same amount of states (electrons), where total number of states 
in each LL grows with B (gs = 2 accounts for spin, gv =2 accounts for valley):

•

• filling factor = number of  occupied LLs (below Fermi energy) - total number of electrons ns devided 
by number of electrons in a LL (not accountig for degeneracy):

•

• Spin and valley degeneracies are lifted at large B-field due to Zeeman splitting and electron-electron 
interactions.
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Zero electron mass and Berry curvature in graphene
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Real-space wave-functions and pseudo-spin texture

Dirac cones in the K and K’ points:

Real space wave-functions:

bonding

anti-bonding
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Visualizing pseudo-spin textures

00

Pseudo-spin textures in k-space:

1800 5400Rotating the k-vector in real space:

Berry’s phase of π and non-trivial topological properties.
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Berry curvature in graphene
Pseudo-spin textures in k-space:

Trajectories around Dirac point in k-space:

Dirac points are Berry 
curvature monopoles

Ω (k)

C = 
BZ


