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Outline of lecture 5 

 Everything needed to understand transport experiments on 2D samples

• Cryogenic low-temperature techniques.

• Electronic transport theory – Drude, Hall, Sommerfeld, Boltzmann

• Measurement techniques - 2-terminal vs. 4-terminal measurements, van der Pauw
technique, I/V and dI/dV, electric field effect.

• Measurements of graphene devices – resistance and conductivity vs. gate voltage, Hall
effect and carrier density, effect of disorder and substrate effects, extraction of electron
mobility, mean free path, contact resistance.
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Atomic force image of final graphene device
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Cooling with cryogenic liquids
Cryogenic fluids: Helium 4 phase diagram:

 Cryogenics is the production and behavior of materials at very low temperatures.

• Evaporative cooling, otherwise known as adiabatic cooling, works on the principle of
liquid evaporation, through which the liquid undergoes a phase transition into the gas
phase, and in the process loses energy.

• One can use other phase transitions for cooling, such as the He3/He4 phase separation
and magnetic phase transitions.
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Typical VTI cryostat for ~ T > 1.5K
Insert with sample holder and 

electrical lines:
Crosssection of a VTI cryostat:

• A typical variable temperature insert (VTI) is inserted to a cryostat containing liquid
helium to cool a superconducting magnet and controls the temperature of the sample.

• The VTI operates by drawing liquid helium through a needle valve. The liquid He-4 passes
through a heat exchanger into the sample space and is then pumped away by a room
temperature vacuum pump. An integral heater and sensor on the heat exchanger allows
the temperature to be set to any value from 1.6 to 320K.
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3He - 4He mixtures
3He - 4He phase diagram: Phase separation of 3He - 4He :

• Pure 4He, with a nuclear spin of I = 0, obeys Boson statistics and forms a superfluid at 2.17 K.

• Pure 3He, with a nuclear spin of I =1/2, obeys Fermi statistics and undergoes a superfluid transition until much
lower temperatures at which the spins pair up and then they also obey Boson statistics.

• The superfluid transition temperature of a 3He - 4He mixture depends on the 3He concentration.

• When this is cooled down from point A to the temperature at point B, it undergoes a superfluid transition. If we
cool the mixture further to point C, it separates into two phases with the 3He-rich phase floating on top of the
heavier 4He-rich phase.

• The 4He-rich phase (the ‘dilute’ phase) contains 6.4% 3He all the way down to 0 K. This finite solubility of 3He in
4He is the key to dilution refrigeration.
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Dilution refrigerator for ~ T < 10mK 
Cooling stages of a dilution refrigerator: 3He - 4He circulation cycle:

 A 3He/4He dilution refrigerator is a cryogenic device that provides continuous cooling to temperatures as low as
2 mK, where the cooling power is provided by the heat of mixing of the helium-3 and helium-4 isotopes.

• As we pump 3He vapour from the liquid inside the still, the 3He concentration in the liquid will decrease.

• The difference in 3He concentration between the still and the mixing chamber results in an osmotic pressure
gradient along the connecting tube, this pulls 3He from the mixing chamber.

• The ‘dilution process’ of 3He moving across the phase boundary is equivalent to an upside-down evaporator.
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Electronic transport in graphene

Band-structure: Rxx and Rxy vs. gate voltage:
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• These oscillations are known as Bloch oscillations.

• The electron position oscillates between 0 and x = 
-2x0, where x0 = 2t/eE.  

• In the absence of scattering no net macroscopic
current can flow.

• The oscillations are due to the fact that with 
increasing k, the electron moves up in the band, 
where ist effective mass  increases. Therefore the 
electrons acceleration decreases over time.

• The effec ve mass m*→ ∞ and then flips sign. 
This is the origin of the Bloch oscillations, as the 
electron moves up and down the band E(k) over 
time.

•  A substance which contains free band electrons 
is an insulator!

Bloch oscillations
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Drude theory – three assumptions
1.Electrons have an average scattering time τ. The probability of 
scattering within a time-interval dt is dt/τ.

2. After each scattering event the electron returns to a momentum 
p=0. 

3. Between scattering events, the electrons are accelerated by applied 
electric and magnetic fields, E and B, and exhibit the Lorentz force –
F= -e(E+vxB).
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Derivation of Drude formalism

• Consider an electron that at time t has a momentum p.

• At time t+dt it will, with probability dt/τ, scatter to p=0, and 
with probability (1-dt/τ) it will not scatter. 

• If it does not scatter, it can accelerate based on an applied force F, with 
the usual equation of motion:

• Combining these two terms, and weighting them with the probabilities 
to give the average:

⃗

• In steady state (to first order in dt):

⃗ ⃗ ⁄

• With F=0 current decays to zero:
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Drude model in electric field E

• In the presence of an electric field E (but no magnetic field B), we have:

• In the steady state we then get dp/dt=0 (m is mass and v is velocity):

• If we have a density of electrons n=N/V (N is total number of electrons and V 
is volume) and each electron moves with an average velocity of v, then the
total current density j is:
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σ

• We can now define the conductivity σ, of a metal by j= σ E, so that:

Drude model in electric field E

• We can similarly define the resisitiviy ρ, so that E= ρj:

μ = v/E = eτ/m = σ/en

• The mean free path of the electron is then:

lmfp = v

• Electron mobility characterizes how quickly an electron can move through a 
metal, while scattering events are pulling it back. The higher the mobility, the 
purer the material:



Dmitri K. Efetov

Drude model in a magnetic field

• In the presence of an electric field E and magnetic field B, we have:

• In the steady state we then get dp/dt=0 (m is mass and v is velocity):

• So ρ is now a matrix that relates E and j:

• Using j=-nev:
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Drude model in a magnetic field

• If the magnetic field is oriented along the z-direction we get:

• The off-diagonal term in the resisitivity are known as Hall resistivity, and 
correspond to the formation of a voltage perpendicular to the current and to
the applied magnetic field:

Hall effect circuit: Hall effect measurement:
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Drude model in a magnetic field

• We define the Hall coeficient as:

• In Drude theory this allows us to determine the density of electrons in 
metals n – or by knowing the density of the elctrons in the matal, we could
use this effect to probe magnetic fields (Hall probe):

• If we consider this for many metals, it is not difficult to estimate the number
of the electrons, and see whether this result is reasonable.

Hall coefficient materials:



Dmitri K. Efetov

σ

• We can now define the conductivity σ, 
of a metal by j= σ E, so that:

Drude model in electric field E, with band-structure

• We can similarly define the resisitiviy ρ, 
so that E= ρj:

• For a typical metal we have:
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Shortcomings of the Drude formulas

• At this point of the calculation, Drude made two assumptions now known to 
be errors. 

• 1. He used the classical result for the specific heat capacity of the conduction 
electrons. This overestimates the electronic contribution to the specific heat 
capacity by a factor of roughly 100. 

• 2. Drude used the classical mean square velocity for electrons. This 
underestimates the energy of the electrons by a factor of roughly 100. 

• Thermal conductivity - The cancellation of these two errors results in a good 
approximation to the conductivity of metals.

• Thermopower - the typical thermopowers at room temperature are 100 times 
smaller than experimentally found of the order of micro-Volts.
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Fermi-Dirac distribution + Boltzmann transport

• The Fermi energy - at T=0 all energy levels are filled
up to this energy:

• We can define the Fermi velocity corresponding to
the velocity of the highest filled level:

⁄

• The average velocity is now defined by the Fermi velocity:

∗

• When an E-field is applied, the Fermi surface is 
displaced by a small amount:
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2-terminal and 4-terminal measurements
• 4-terminal measurement schemes allow to eliminate unwanted contact resistance.

• Current injection and voltage measurement contacts are separated.

• Current flowing through Voltmeter contacts are negligible (orders of magnitude lower).

2 terminal measurement:

4 terminal measurement:

Typical gated 4-terminal graphene hall 
bar device:

Longitudinal resistance: 𝑅𝑥𝑥 = 𝑉𝑥𝑥/𝐼

Hall resistance: 𝑅𝑥𝑦 = 𝑉𝑥𝑦/𝐼
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Electric field effect

• The field effect is the modulation of the electrical conductivity of a material by the
application of an external electric field.

Typical gated 4-terminal graphene hall 
bar device:

Field effect transistor (FET):

Gate capacitance : 𝐶𝑔 = εrε0 A/d

Applied gate voltage: 𝑉𝑔

Carrier density: 𝑛 = 𝐶𝑔 ∗ 𝑉𝑔 /e = 115aF/μm2  ∗ 𝑉𝑔
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Electric field effect in graphene

• The field effect is the modulation of the electrical conductivity of a material by the
application of an external electric field.

Typical gated 4-terminal graphene hall 
bar device:

Gate capacitance : 𝐶𝑔 = εrε0 A/d

Applied gate voltage: 𝑉𝑔

Carrier density: 𝑛 = 𝐶𝑔 ∗ 𝑉𝑔 /e = 115aF/μm2  ∗ 𝑉𝑔

Rxx vs. Vg measurement:
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Hall effect measurements and carrier density 
Hall effect: Rxx vs. Hall vs. Vg measurements:

Lorentz force is balanced by electric force: e(v x B) = eE

Current: I = neAv (n – carrier density, A - area, v – drift velocity) 

Hall voltage: VH = Ew = IB/net

Hall resistance: Rxy = Ew = IB/net (t = 1 in 2D)
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Hall effect measurements and carrier density 
Hall effect: Rxx vs. Hall vs. Vg measurements:

Lorentz force is balanced by electric force: e(v x B) = eE

Current: I = neAv (n – carrier density, A - area, v – drift velocity) 

Hall voltage: VH = Ew = IB/net

Hall resistance: Rxy = Ew = IB/net (t = 1 in 2D)
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Extraction of device mobility and mean free path
Mobility vs. n measurements:

Graphene on SiO2 mobility exceeds >10.000 cm2/Vs

Free standing graphene mobility exceeds > 100.000 cm2/Vs

Free standing and hBN encapsulated graphene mobility at 
low temperatures exceeds > 1.000.000 cm2/Vs

SiO2

Free standing

Electron mass (cyclotron resonance):

Mean free path:

Free standing and hBN encapsulated graphene
mean free path exceeds lmfp > 100 μm
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Different scattering processes and Matthiessen's rule
In a real solid, there are a variety of sources for electronic scattering, 
most prominently:

• collisions with electrons

• absorption and emission of phonons

• impurities, defects etc.

One usually assumes that the associated electronic scattering rates 
are additive (Matthiessen's rule): Implicit is the assumption that all 
scattering processes are independent and that τj is not a function of k.

ρ = ρ1 + ρ2 + ρ3 + etc.
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Different scattering processes and Matthiessen's rule

• Impurity Scattering ρ0(T=0)

• Charged Impurities

• Lattice defects

• Substrate etc.

• Substrate ρr(n,T)

• Polar Optical Phonons

• Trapped Charges

• Intrinsic Graphene Phonons ρA(T)

const.

~ exp(T)

~ βT

ρ = ρ1 + ρ2 + ρ3 + etc.
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What limits mobility in graphene?

• Impurity and phonon scattering.

• Potential variations broaden the
Fermi energy – puddles.

• Results in increased resistivity  
and decreased mobility.

• Results in broadening of the 
Dirac point.
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Different substrates for graphene
Potential variations on different substrates (STM measurements):

SiO2 : hBN:
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Graphene/hBN - record mobility at room temperature


