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Outline - Lecture 4

Introduction into Nanofabrication.

Materials deposition technigues.

Nanolithography techniques (creating nanoscale patterns).
Ftching techniques (defining nanoscale structures).

Nano characterization techniques.

Backend processing (wire-bonding, packaging).
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Modern Electronics —semiconducting silicon '50

First field effect transistor: IBM field effect transistor 2020:

8 nm Fin Width

42 nm Fin Pitch

Oxide -
e

Surc

Body

Si Substrate

- Research and development led to miniaturization over 7
orders of magnitude from cm to nm sca

c.
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Miniaturization — Moore’s law
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Moore’s Law: The number of transistors on microchips doubles every two years [elgWHls
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers,
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OurworldinData.org - Research and data to make progress against the world's largest problems, Licensed under CC-BY by the authars Hannah Ritchie and Max Roser.
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Wiring of transistors
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Miniaturization — Moore’s law
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Advent of Nanotechnology

SIO

GaAs
InAs

AlGaAs
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Quantum Technologies

Image of a single electron silicon transistor:

—> Transistors made of a single atom
= Quantum mechanics plays key role
> Qubits, can store guantum information
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Cleanroom

* A cleanroom is an engineered space that maintains a very low concentration of airborne particulates. It is
well isolated, well controlled from contamination, and actively cleansed. This are key to fabricate large scale
wafers will billions of nanostructures, with the desired doping levels and free of any type of contaminants.

* (lassification of cleanrooms: DIN EN 1SO 14644 - ISO class n — less than 10n particles smaller 0,1 um pro m?

Cleanroom crossection: Cleanroom impressions:
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Frontend micro / nano fabrication

Deposition Lithography Ftching

i
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ml‘em; 04/2011 ‘ .

Frontend: ~ 30-50 Zyklen

R

Backend

dicing, bonding, electrical tests

o | Chair of Experimental
Dmitr K. Efetov LM || | Solid State Physics

MINCHEN




Fabrication processes

Deposition oo Lithography, Etching Characterization
. - i 54 '(
N N <
* Evaporation * Shadow Impact * Wet Etching e Atomic Force
Lithography Microscopy (AFM)
* Sputtering * Electrochemical
* Projection Etching * Scanning Electron
* Molecular Beam Lithography Microscopy (SEM)
Epitaxy e Plasma Etching
* (MBE) « Laserlithography * Ellipsometry
* lon Beam Etching
¢ VdW Stacking * Electron Beam * Profilometry
Lithography e Reactive lon Etching
* Plasma Enhanced * White Light Interf.
(CVD) * Nano Imprint * Inductively Coupled
Lithography RIE * Confocal Laser
* Atomic Layer (UV or thermal) ° .. Microscopy
Deposition
* 3D Printing * Energy Disp. X-Ray
* Electroplating < .. Spectroscopy (EDX)
* Low Pressure CVD * Raman Spectroscopy
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Pressure mm of Hy

Fvaporation of materials

Cleanroom crossection:

C

E-beam evaporation:
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Vacuum evaporation is a form of physical vapor

deposition. Such a technique consists of pumping
a vacuum chamber to pressures of less than
107> torr and heating a material to produce
a flux of vapor to deposit the material onto a surface.

Electron Gun

e Thermal evaporation
* Sputtering
* LEtc
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Molecular beam epitaxy

MBE machine:

takes
vacuum or ultra-high vacuum (1078-107"2 Torr). The most

Molecular-beam  epitaxy place in

high

important aspect of MBE is the deposition rate (typically
less than 3,000 nm per hour) that allows the films to
grow epitaxially. These deposition rates require
proportionally  better vacuum to achieve the
same impurity levels as other deposition techniques. The
absence of carrier gases, as well as the ultra-high vacuum
environment, result in the highest achievable purity of the
grown films.

MBE crossection:
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RHEED gun

'\Hcat.iu g coils
~

Dmitri K. Efetov

|||||||||||

-
LU [

Chair of Experimental
Solid State Physics



ALA2R2RRN

AAR AR AR RN

AR AA AR RN N

(AR R D

AAREE R RN

LA AR LR D

AL R AL RN

AR AR R RN

Dmitri K. Efetov

EEEEEEEEREEER

S TA AT RAERR.

FEILETRET L.

FETLEERRAETR R

TR TR ER N

T2 TREATAE

SaRaabaan

TR SRR R R

AR ERARBEEDN

‘AL LA A RS
bl L A
b L RS AT
Ll AL AL
At LA LA
LA S A S A
A TS A LAY
LA L A S A Y
I

Heterostructures — Molecular LEGO
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Mechanical exfoliation of 2D van der Waals materials

a {\ b
o Adhesive e
' Exfoliated flakes
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VdW heterostructures — clean coupling over < 1nm

vdW co-lamination transfer technique:

- 3

A. Geim, et. al. Nature (2013). C.Dean, P. Kim, J. Hone, et. al. Science (2013).
Transparent 2D materials stamp: 2D stamping stage:
PDMS
Scotch tape 3 PC film

Double-sided tape

Glass slide

\
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VdW heterostructures — clean coupling over < 1nm

vdW co-lamination transfer technique:

PDyg
1? BN-G-BN
A. Geim, et. al. Nature (2013). C.Dean, P. Kim, J. Hone, et. al. Science (2013).
Designer vdW stack: TEM cross-section: Moiré superlattice:
RIS f:”' B
/,,! ‘.\‘:a ; ) hBN

\1 \m ,.;a .m» ﬁ«

~ 1_%1 SADABI

\k{*;‘:::;ﬁ Graphene
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MBE (LEGO) vs. vdW (CARDS)

Molecular beam epitaxy: Van der Waals assembly:
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Shadow Impact Photolithography

Collimated beam

IR RRRR RN
Photomask |_ o _|

TN R e
W sy After development

Wafer coated with
photoresist

a) Positive tone photoresist b) Negative tone photoresist
Typical composition: phenol resin (Novolak), Typical composition: acrylic resin,
photo-active compound (often DNQ), photoinitiator, solvents
solvents Crosslinking or polymerization (chain growth)
PAC acts as dissolution promotor induced by UV irradiation
Exposed photoresist gets dissolved, shadowed Low dissolution rate of exposed photoresist

regions remain
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Photolithography

Shadow mask:

« Reflector
< Hg Arc Lamp
< Filter

<+—— Condenser Lens System

>

Mask

<

Reduction Lens System

«—— Wafer and Wafer Stage

‘ R _ stage can be stepped to
each exposure site

Laser writer:

Data
LED ¢
.. Design
SLM (Spatial Light | Mirror
Modulator):
DMD‘IM ‘ i |
¢ |l | Focusing lens

1 -{ ]- |F

]

| | /

Scan width ,

(stripes)
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Evolution of Photolithography

* The Abbe diffraction limit for a microscope states: Light with wavelength A, traveling in a medium with
refractive index n and converging to a spot with half-angle 6 will have a minimum resolvable distance of d:

A
d= ———
2nsin @

e Toincrease the resolution, shorter wavelengths can be used such as UV and X-ray microscopes. These
techniques offer better resolution, but ultimately also hit a natural wavelength limit at several nm.

Minimum Dimension (nm)

10,000 .
[4 K7 7000 } Contact Exposure / G-line (436 nm)
5 000 - TTILIII
’ 16 K/ 000 } G-Line 1:1 Projection
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LU } 5:1 Projection
S00  I-Line (365 nm){
5:1 Projection
200 DUV (248 nm) 4.1 Projection
100 193 nm Projection -[
07?7
| | | | | | | 1 | | |

1976 1980 1984 1988 1992 1996 2000 2004

Year
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F-beam lithography (vector scan)

Electron
soUrce

D

Scan generator

Condensor
lenses
Amplifier
%, ¥ scancoils
Objective y
lens

Back-scatlered
electron detectar

X-ray
detector *

f ' Secondary
electron detector
Sample

The acceleration of electrons in an
electron beam gun with the acceleration
voltage Va results in the corresponding de
Broglie wavelength

[ / [ [ /
([ /[ LY/ /
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Main Principle of Reactive lon Etching

Gas inlet

Etching: breaking chemical bonds and turning

atoms from solid state to volatile etching F%JSF_. — PY
products

= (@]
Low pressure plasma (dissociation, ionisation): - ®
main mechanisms, physical component (lons) . -
weakens bonds on the surface, and chemical Coils [ Stlkimis
component (Radicals) forms volatile by- l o
products et @

To pump l

Generating an ion flux: through charging of the Cooling Gas

Inlet

plasma needs an RF generator (@13.56 MHz:

difference in mobility of ,heavy‘ions and light’
electrons

A'dvantages of Reactive lon Etching: potentially ions | ”‘:}'trals N e'ecfrfcifie'd
highly anisotropic, ions follow the field line. \”,'L * l 4 "

photomask

Y

Good selectivity defined by the reactivity of the
radicals. Controllable, stable etch rate.
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Chemistry of Reactive lon Etching

« Chlorine based chemistry (SiCl4, BCI3,
Cl2...) for most metals (Al, Cr, Au, Pt) and
compound semiconductors (III-V, e.qg.
GaAs)

« Oxygen (02) for Carbon based materials
(mostly Polymers) by forming CO and CO,

 Fluorine based chemistry (SF6, CHF3,
CF4...) for Silicon, Silicondioxide etc. and
some metals (Ti) Si + 4 F —» SiF4 (gas)
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Typical process tflow tor graphene device - stacking

a b ¢

Top hBN picking up Graphene picking up 1% Graphene picking up 2"

300 nm SiO, T=100 °C

300 nm SiO, T=100 °C 300 nm SiO, T=100 °C

300 nm SiO, T=100 °C

h
g Stack dropping down Stack releasing

U . R - ]

300 nm SiO, T=100 °C 300 nm SiO, T=180°C
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PDMS/PC -
. =Craphite

hBN
SifSio, T=~110°C

T~120°C-> 180°C
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Typical process tflow tor graphene device - nanofab

1. Exfoliation and stacking

Substrate ,Stack*

2. E-Beam Lithography

s T

4. Deposition evaporation gl

5. Lift-Off
10 um
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Typical key words for description of process flow

Pretreatment, adhesion promotion, Surface chemistry: hydrophilic — hydrophobical (non-
polar) by means of: using a primer, heating, oxygen-plasma

Spin coating (defines the thickness of the PR layer depending on viscosity, speed)
Softbake (evaporation of solvents)
Exposure (photo-chemical activation)

Post-Exposure-Bake, PEB
(increasing degree of crosslinking; finishing the photo-reaction)

Development (dissolve either exposed or non-exposed resist)
Hardbake (better adhesion and chemical-mechanical stability)

De-scumming (Etching of resist residues)
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Backend processing — final device assembly

On-chip electrodes: Wire bonded chip in carrier and insert:

ol o2 03 04 05 06
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Atomic force microscopy

ﬁnnscma

Force |

|

— Repulsive forces -
/ short range Coulomb interaction

Tapping Mode

= [Distance

Force response curve

\ Attractive forces —

van derWaals interaction

Atomic Force Microscope

position-sensitive principle
photodetector
ap™y
laser

lateral force
measurement

cantilever

scanning direction
—_—

scan profile

‘sample
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Atomic force image of final graphene device
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