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Outline - Lecture 3

• Short reminders on graphene's, Bravais lattice, reciprocal lattice, tight binding
model, and band-structure.

• Quick calculation of the density of states (DOS).

• Expansion of the dispersion around the K and K’ points, results in the Dirac
equation.

• Derivation and visualization of the pseudo-spin, and its helical locking to the
momentum.

• Demonstration of the absence of back-scattering.

• Visualizing the phase of the orbital wave-functions with Fermi energy.
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Graphene lattice and reciprocal lattice

M

Two non-equivalent 
K and K’ points

• A and B sub-lattices translate into the K and K’ points in the BZ.

Two non-equivalent 
A and B sub-lattices

• Symmetries of the real and reciprocal space protect the Dirac points:

- inversion symmetry (C2 or A B)
- time reversal symmetry (T or k -k)
- 120o rotation symmetry (C3 or 0o 120o)
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A and B basis representation

= ↑

↓

H( )=

• One can also rewrite this in a matrix form in the basis of the A and B wave-
functions:

spinor 
representation

=0

• Solving the Hamiltonian for the AA and BB combination leads only to the self
energies, which by symmetry are just zero:

• Here the A and B sublattice sites act as two orthogonal wave-functions, and one
can make the same analogy as for the spinor of the 2 states of the spin. We will
show that this description can be explained as the isospin.
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Graphene band structure via tight binding derivation
• For the and only translation vectors to the nearest neighbor sites give

finite values. For the A lattice sites (3 adjacent B sites) these vectors are just the
nearest neighbor vectors. And for B analogously:

• Leading to:

, 

∗ H( )

• With :

/

/
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A and B basis representation

= ↑

↓

H( )=
/

/

• One can also rewrite this in a matrix form in the basis of the A and B wave-
functions:

γ = γ0 can be interpreted as the hopping parameter of an electron tunneling
from A to B lattice sites.

spinor 
representation

∗ H( )
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Graphene band-structure – Dirac cones  

• The final solution of the Eigenenergies of the Hamiltonian have the form:

• Dirac cones are formed in the K and K’ points. Here the electrons can be shown
to be massless and the dispersion relation described by the Dirac equation.

• Solve Schroedinger’s equation to get Energy Eigenstates:
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Dirac cones in the K and K’ points

• Linear dispersion relation  Effective mass of
the electrons is zero m* = 0.

• Dirac cones are formed in the K and K’ points
2 valleys no band-gaps.

valence band (holes)

conduction band (electrons)

Valley K’ Valley K

∗ ~ 0

Dirac point
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Analogy to Dirac equation
• Non-relativistic particles – Schroedinger equation – no spin vs. momentum

locking.

• Relativistic particles – Dirac equation – spin and momentum are locked.

•

• H( ) = 
( Pauli matrizes)

• v = c , m = 0

• spin // momentum

“Helicity” (or “chirality” 
for particles with mass)

particle

anti-particle
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Density of states (DOS) calculations in 2D
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DOS and EF in graphene

E( ) 

N(κ)dκ
κ κ

( )( )
2 (spin) 2 (valley) = 2A 

(ħ )

g(E) 
(ħ )

n( ) = g(E) E
(ħ )

(n) = 

Number of states in κ :

Number of states (per area) vs. E:

Energy dispersion:Band structure:

DOS vs. E:

Carrier density vs. :

vs. n:



Dmitri K. Efetov

Low energy expansion around K
• We take low energy expansion for small momentum around the and

for low energy:

+  ( )

= -

• Then Hamiltonian elements become:

H( )=

• And the Hamiltonian around the K point takes the form:
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Dirac-like equation with pseudospin

• For one K point we have a two-component wave function:

; ;

H( ) =

• The Hamiltonian then takes an effective form of the Dirac Weyl Hamiltonian:

• Where and are Pauli spin matrizes:

• Bloch function amplitudes on the A and B lattice sites (“pseudospin”) mimic the
spin components of the relativistic Dirac fermions.

A to B hopping

B to A hopping

= ↑

↓
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Dirac equation for both valleys K and K’

• Including now expansions around both K and K’ points we obtain a four-
component wave-function from the A and B lattice sites and at K and K’ points:

H( ) = ∗

• The Hamiltonian then takes an effective form of the Dirac Weyl Hamiltonian:

• Hamiltonians around H( ) and H( ) are connected by time reversal symmetry.

=

,

,

,

,

Sub-lattice index A and B

Valley index K and K’

H( )

H( ) 
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Helicity (Chirality)
• For one K point we have a two-component wave function:

= = ↑

↓

“Helicity” – projection of the spin onto 
the momentum – is conserved (since 
energy is conserved).

H( ) 

• Pseudospin direction is linked to momentum 
 in K = 1 (electrons), = -1 (holes) 
 in K’ = -1 (electrons), = 1 (holes)

• Hamiltonian around the K point contains the helicity operator :
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Pseudo-spin

• Pseudo-spin is oriented at the equator A and B have same amplitudes.

= ↑

↓

Bloch sphere representation:Real space: Wave functions:
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Backscattering is forbidden – conservation of helicity

Conservation of helicity dictates:

• No back-scattering within the Dirac cones (pseudo-spin has to flip). This can be
calculated by calculating the scattering probability between:

• Analogously there is no back-scattering
between cones.

H( ) ∗

X X
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Helicity (Chirality) and Pseudo-spin texture

• “Helicity” – projection of the spin onto the 
momentum – is conserved (since energy is 
conserved).

H( ) 

• Pseudospin direction aligned to : 
 in K = 1 (electrons), = -1 (holes) 
 in K’ = -1 (electrons), = 1 (holes)

• Hamiltonian around the K point contains the
helicity operator :

Wave-functions resemble spin:

= ( )
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Spin (SU(2)) X Pseudo-spin (SU(2)) = SU(4)

Spin Pseudo-Spin

X

Wave-functions resemble spin:

Spinors: Two quantum numbers spin and pseudo-spin:

SU(2) x SU(2) = SU(4)

= ( )

 Also convenient to translate to SU(4) basis of spin x valley.
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Relating the phase of wave-functions to carbon atoms
Wave-functions resemble spin:

= ( )

Bonding (symmetric) 
wave-functions – high energy:

Anti-bonding (anti-symmetric) 
wave-functions – high energy:

bonding

anti-bonding

=

=



Dmitri K. Efetov

Phase changes under hopping from A to B

Phase: Phase changes under hopping:Propagation directions:



Dmitri K. Efetov

Visualizing wave-functions in real-space

– point, :

=

=

Wave-functions resemble spin:

=

=

– point, :

Phase:

Band-structure:

= ( )
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Visualizing wave-functions in real-space

– point, :

Wave-functions resemble spin:

– point, :

Phase:

Band-structure:

= ( )

anti-bonding

bonding

=

=

=

anti-bonding

bonding

=
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Real-space wave-functions and pseudo-spin texture

Dirac cones in the K and K’ points:

Real space wave-functions:

bonding

anti-bonding
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Berry curvature in graphene
Pseudo-spin textures in k-space:

Trajectories around Dirac point in k-space:

Dirac points are Berry 
curvature monopoles

Ω (k)

C = 
BZ
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Haldane model - Topology

• Next-nearest neighbor 
hopping induces gap opening
• Berry curvature loops

• Topological Chern bands

Duncan Haldane2016


