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Event

Lecture “Introduction to Graphene and 2D
Materials”

Lecture Materials:

Lecture outline

Lecture 1

Tutorials "Introduction to Graphene and 2D
Materials”

Exercises:

Room

Geschw.-Scholl-Pl. 1 (N)/Kleiner
Physiksaal (N 020)

Geschw.-Scholl-Pl. 1 (N)/Kleiner
Physiksaal (N 020)

Time Lecturer

Prof. Dr.
Mon, 8:30am - D.K.Efetov
10:00am

Begin: 15.04.24

End: 15.07.24

Fri. 08:30am - Dr.M.Lee
10:00am

Fri. 10:30am -
12:00pm

Begin: 19.04.24

End: 19.07.24

- More info on https://www.quantummatter.physik.Imu.de/
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Lecture and Tutorials of “Introduction to Graphene and 2D Materials”

This class builds upon the “E M1 Advanced Solid State Physics” lecture and develops an
mtroductory-level msight into the main concepts and the rich phenomenology of graphene and
other two-dimensional materials. leading up to the recent advancements in moire superlattices. In
particular, the class aims to introduce all the main concepts and techniques that are needed for the
study of the key experimental literature on the emergent field of moiré materials, with a strong
bias towards low-temperature electronic experiments.

Lecture:

Lecturer: Prof. Dr. Dmitri K. Efetov, E-mail: dmitri.efetov@lmu.de
Mon. 8:30am — 10:00am. Geschw.-Scholl-P1. 1 (N)/Kleiner Physiksaal (N 020)

Start: 15.04.2024 - End: 15.07.2024
Tutorials:
Dr. Martin Lee, E-mail: martin.lee@lmu.de

Tutorial 1: Fri. 8:30am - 10:00am, Geschw.-Scholl-PIL. 1 (N) / Klemer Physiksaal (N 020)
Tutorial 2: Fri. 10:30am - 12:00am, Geschw.-Scholl-PI. 1 (N) / Kleiner Physiksaal (N 020)

Start: 26.04.2024 - End: 19.07.2024
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Exercises:

1. 29.04 - 17.05 — Tight binding, Dirac equation, massless electrons, valley degeneracy and
pseudo-spin texture, DOS calculation. conversion of carrier concentration to Fermi energy etc.

2. 27.05 — 14.06 — Electronic transport, consequences of the Dirac equation, Klein tunneling,
conversion of FWHM mto disorder broadening. derivation of LL dispersion vs. cairier

concentration and energy ete.

3. 17.06 — 05.07 — Quantum Hall effect, Topological phases, Haldane model. superlattices etc.
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Qutline - Lecture 2

Short reminders on basic 3D concepts of crystals and band-structure theory —
Bloch’s band theory, Bravais lattice, reciprocal lattice, tight binding model.

Applying the above concepts to the tight binding calculations of single-layer
graphene, hBN and AB bilayer graphene.
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Bloch waves and band structure

Blochs theorem states that the solutions od the Schrodingers equation in a
periodic potential takes the form of plane waves that are modulated by a
periodic function, and are the basis for the states in crystals.

Bloch waves lead to the formation of electronic bands and Fermi surfaces.
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Tight binding model definition

* The tight-binding model (or TB model) is an approach for the calculation
of electronic band structures using an approximate set of wave
functions based upon superposition of wave functions for isolated
atoms located at each atomic site.

* When the atom is placed in a crystal, this atomic wave function overlaps
adjacent atomic sites, and so are not true eigenfunctions of the crystal
Hamiltonian. The overlap is less when electrons are tightly bound, which
is the source of the descriptor "tight-binding". Any corrections to the
atomic potential required to obtain the true Hamiltonian H of the
system, are assumed small.
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Recipe to calculate band structure from tight binding

Use Bloch’s method to define wavefunctions, which reflect the lattice symmetry
(are invariant under any lattice vector translation R,), and include orbital
wavefunctions ¢m(r) of the atoms of a single atom Hamiltonian  Ha  in the
crystal. Use a linear combination of these as trial wave-functions which are

defined as:

1 .
Ym (r) =~ ﬁ RznfiZk'R” em(r—R,) .

Define Hamiltonian, is based on the potentials of the atoms in the crystals,
where V(r —R,) is the atomic potential of a site R, in the crystal. In the tight-
binding limit these can be assumed to be small corrections AU :

H(r) = Hy(r) + Y _ V(r—R,) = Hy(r) + AU(r),
R, #0

Solve Schroedingers equation to get Energy Eigenstates:

em = / 87 g (1) H (x) 1y (r)
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Hybridized sp"23 orbitals in carbon systems
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Hybridized bonds in carbon molecules - sp? bonds

In molecules or crystals atomic orbitals can hybridize and form bonds with
nearest neighbors = the s and p orbitals can hybridize into sp? orbitals.

In graphene each carbon atom has an arrangement of 2(1s)3(sp?)1(2p,) orbitals,
instead of a typical atomic arrangement of 2(1s)2(2s)1(2p,)1(2p,)-

Carbon orbitals in a graphene lattice:

Carbon orbitals:
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Graphene 7t-bands

Bands formed from the sp? orbitals, the o-bands, lie at high energy and do not
contribute to the electronic properties. They are very strongly bound and give
rise to the ultra-strong mechanical properties of the graphene lattice.

Bands formed by the p, orbitals, the m-bands, lie at low energy and define the
electronic properties = even though they not very tightly bound to the carbon
atoms, the tight binding approximation works very well.

Fach tightly bound electron contributed to one band = each unit cell contains
two A and B sublattices, and hence two p, orbitals form 2 electronic bands.

sp? hybndlzatlon 7 bond Delocalized = orbitals
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Bravais lattice in 2D

Any crystal lattice can be described by giving a set of two base vectors
a, a,, where a lattice can be formed by generating an infinity of translations

vectors R = ua, + va, with u, v = integers.

The end points of all possible translations vectors define the lattice as a periodic
sequence of points in space - crystal lattices show a translation symmetry.

Point group 5 Bravais lattices
Lattice system L i
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Graphene hexagonal lattice

W) , .
Unit cell vectors: B neighbors:
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" Carbon translation vectors: A neighbors:
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—/ 5 =5 (1L,—V3)

v 172
al . 62 —_ _O (1’ \/§)

- Two non-equivalent — _, 2
| A and B sub-lattices 63 = aog(—1,0)

* Graphene lattice consists of carbon atoms arranged on a 2D Honeycomb lattice
-> not a Bravais lattice.

* Graphene unit cell, has 2 equivalent hexagonal sub-lattices, called A and B -
which form a non-primitive unit cell with A and B carbon atoms on a hexagonal
lattice > bipartite lattice, which contains 2 hexagonal sublattices A and B.
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Reciprocal lattice

Fourier transform of the Bravais lattice = from real space into momentum

space (k-space). Set of all wavevectors E bj of plane waves in the Fourier series
of a spatial function whose periodicity is the same as that of a direct lattice.

Has fundamental role in most analytic studies of in the theory of diffraction and
electron wave functions.

The Brillouin zone is a Wigner-Seitz cell of the reciprocal lattice (basically unit cell
of the reciprocal lattice).

a; 'bj = 271'57;]'
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Graphene reciprocal lattice

k,
A b,
| _ K
Reciprocal vectors:
- 2T I
b1 — % (1, _\/§) L > kx
7 2Tt
b, = ﬁ(l' V3) K’

b, Two non-equivalent
K and K’ points

* High symmetry points inthe BZ-T, M, K, K’
* Aand B sub-lattices translate in the K and K’ points in the BZ
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Graphene lattice and reciprocal lattice

\v) k\,

A b,
A B
\ K

I . k.
L./
Two non-equivalent b, Two non-equivalent

A and B sub-lattices K and K’ points

 Aand B sub-lattices translate into the K and K’ points in the BZ.

* Symmetries of the real and reciprocal space protect the Dirac points:

-inversion symmetry (C,or A= B)
- time reversal symmetry (T ork = -k)
-120° rotation symmetry (C, or 0° = 120°)

Chair of Experimental
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Graphene band structure via tight binding derivation

Hamiltonian:
Api(F) = [= 372 + U () = EE%i()

Since the two sub-lattices A and B only commute separately with the
Hamiltonian, we need to treat these separately and define also separate wave-
functions for these, resulting in a set of two orthogonal wave-functions:

Yz (F) = bz, (7) +lzp (7)
= G5 () Zne ¥, (7~ B7) + 58 (F) S e s (7~ Ry)

Solution of the Hamiltonian then become (with lattice vectors R = U@, + va,):

Hap = Y | eRnw; (7 = Ry)H(F Jup (7 — Ry )dff

The anti-commutation relations are:
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A and B basis representation

One can also rewrite this in a matrix form in the basis of the A and B wave-
functions:
O

<[ Yra™ Py spinor
s 10) - ()

sz(F) representation
O

Here the A and B sublattice sites act as two orthogonal wave-functions, and one
can make the same analogy as for the spinor of the 2 states of the spin. We will
show that this description can be explained as the isospin.

= _[Haa HAB]
H(k)_[HBA Hpg

Solving the Hamiltonian for the AA and BB combination leads only to the self
energies, which by symmetry are just zero:

Hyso = Hpp=0

Dmltrl K EfetO\/ m Chair of Experimental
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Graphene band structure via tight binding derivation

For the Hyp and Hgy Only translation vectors to the nearest neighbor sites give
finite values. For the A lattice sites (3 adjacent B sites) these vectors are just the
nearest neighbor vectors. And for B analogously:

6 =(1,—V3), 8, =2(1,V3), & = ap(~1,0)

Leading to:

H,s = v, Z e‘iza{ = Yo [e_”‘xa0 4 2etkxao/2 cos(kyaox/g/Z)]

n

Hg, = v, z eizg{ = yo[etx% + 2e "tkxao/2 cos(kyao\/§/2)]

n

With Yo-

Yo = [wi(PHE)ug (? + 5_3’) ~2.8eV
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A and B basis representation

e QOne can also rewrite this in a matrix form in the basis of the A and B wave-
functions: o

= Yz, (1) Y1 spinor
we@={1=0) - ()

‘/’EB(F) representation
@
S 0 e ~tkx@o 4 2etkx@0/2 cos(k, ay\V3/2
H(k)= Yo ikya —ikyag/2 [ ( 7 / )
[etx%0 4 27 Hx0 Cos(kyaox/g/Z)] 0

Vo = [ ui(PHHF)ug (F + 6_3’) ~ 2.8eV

Y =Y, can be interpreted as the hopping parameter of an electron tunneling
from A to B lattice sites.
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Graphene band-structure — Dirac cones

Solve Schroedingers equation to get Energy Eigenstates:

em = / 81 g (1) H (x)hn (r)

The final solution of the Eigen-energies of the Hamiltonian have the form:

E(l_é) = -I_-yo\/B + 2 cos(\/gkyao) + 4 cos(3k,ay/2) cos(\/gkyaO/Z)

Dirac cones are formed in the K and K’ points. Here the electrons can be shown
to be massless and the dispersion relation described by the Dirac equation.

ky —
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Dirac cones in the K and K’ points

Linear dispersion relation = Effective mass of " "

the electronsis zero m™ = o.

_ V3a,y

c
~10°m/s

1
m* = +h (dZE") ~0 Vi

— "\ dkz 2h

Dirac cones are formed in the K and K’ points =

2 valleys = no band-gaps.
4

K

Encrgy/(units of )
=

Wave vector

300

Valley K’ Valley K

conduction band (electrons)

irac poin

valence band (holes)

Dmitri K. Efetov
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Phase changes under hopping from Ato B

Propagation directions: Allowed k-vectors: Phase changes under hopping:

0 (L ' K
' ' .
.o .
' .

¢ e ly
R4 e A

/‘ metallic

gappea
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Analogy to Dirac equation

* Non-relativistic particles — Schroedinger equation — no spin vs. momentum
locking.

* Relativistic particles — Dirac equation — spin and momentum are locked.

* (ihy*o* —mc)y =0

A “SCthdinger e ultra—relatiyistic
fermions Dirac particles . H(ﬁ) — co_"ﬁ
<6 (6 Pauli matrizes)
particle
* Vv=C,m=0
y anti-particle spin // momentum
| 44 . . J)
52 /2m" Hecg.p - “Helicity” (or “chirality

for particles with mass)
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Angle-resolved photo emission maps band-structure

ARPES measurement schematic:

Y =

Electron
analyzer

Energy and momentum
conserving photo-
emission process

Eyin = hv — ¢ — Ep,

flk“ = 4/ szkin Sin(tg).
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hBN tight binding

We use a Hamiltonian that considers only the pz orbitals (or hybridized orbital)
from the boron B and nitrogen N atoms.

We consider only nearest neighbor hopping. Onsite energy on the B atom is Eg
and onsite energy of the N atomis Ej.

Yo is the hopping parameter between N and B.

—

0, are the translation vectors between the B and N atoms.

kA

y

ar'
/¢
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hBN tight binding

We use a Hamiltonian that considers only the p, orbitals (or hybridized orbital)
from the boron B and nitrogen N atoms.

We consider only nearest neighbor hopping. Onsite energy on the B atom is Eg
and onsite energy of the N atomis Ej.

Yo is the hopping parameter between N and B.

—

0, are the translation vectors between the B and N atoms.

H(k)= Moﬁé Yo Zne o 35 v
YoZue®  -My | 3o B

-5 |

My = (Eg—Ey)/2 '
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Comparison hBN and graphene band-structure

Band-structures between hBN and graphene are similar, but the inequivalence
of the A and B carbon sub-lattices, which are now replaced by N and B sub-
lattices, have no C,T symmetry, and the Dirac point are lifted and replaced by
large band gaps.

. |—— Graphene

Energy(eV)
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Similar gap closing in SiC vs. Si

o & @ M
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Bilayer graphene

AA-stacking AB-stacking
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AB bilayer graphene unit cell and BZ

* AB bilayer graphene consists of two
AB stacked graphene layers. The unit
cell can be spanned by the same unit
cell vectors like in single-layer
graphene, with now 4 atoms in the
unit cell. This results in A and B (A’
and B’) sub-lattices in each layer, and
therefore 4 equivalent sub-lattices.

Dmitri K. Efetov

| Chair of Experimental
st | Solid State Physics




Potential difference between the layers

* One big difference to single graphene, is that one can put the two graphene
layers onto different potentials, which define a potential difference between the

layers A. This can f.e. be induced by a perpendicular electric field E.

E-field

i = S s, BES >
"'Fl-q— . — ""’_ . ---—-.,.
e, 'ﬁ--'_'h
S

* Solving the Hamiltonian for the self energies of the A1A1, B1B1, A2A2, B2B2
combination leads only to the self energies, which by symmetry should be just
zero, but now can be raised or lowered by A:

—Hp141 = —Hp1p1= Hpp42 = Hpapy = A2

Dmitri K. Efetov
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Isospin in AB bilayer graphene

One can also rewrite this in @ matrix form in the basis of the A1 and B1, and A2
and B2 wave-functions:

P (F)=

EA1(i)
.
lIJFAZ(F)

EBZ(F)

Similar to single-layer graphene we can define the isospin properties in AB bilayer
graphene, where we now have 4 orthogonal wave-functions.

(

\

—iNyD
Y0 Z (,—i’\'rsi
2
0

0

~ Z (J—H:(i-
i
~A/2
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/1

0

0

g ¢!
A/2

. —ikd,
YO E :( ’
7

0

0

oY e
i

A

)

—ikd;

oy

Solving the Hamiltonian gets us the following band-structure:

,\/%
2 4

A:
_+_

4

+ hlvke? £ - % + hPvER2(72 + A2)
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AB bilayer graphene band structure

Unlike single layer graphene, that has 2 bands (2 electrons per unit cell), AB
bilayer graphene has 4 bands (4 electrons per unit cell).

The K-point are connected by one point, but can be gapped out, when a
potential difference is applied between the layers.

AB bilayer graphene has isospin properties, defined by 4 spinor like wave-
functions.
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ARPES on AB bilayer graphene
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Exotic new band structures

A “Schrédinger B ultra-relativistic C massless B massive
fermions” Dirac particles Dirac fermions chiral fermions
E
k, \; \;
K, / /
_ 40 " _ — phki ~ _ — 2 _ 2
=p°/2m’ H=cG-p H=v.o.p = /2m’
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