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Outline - Lecture 2

• Short reminders on basic 3D concepts of crystals and band-structure theory –
Bloch’s band theory, Bravais lattice, reciprocal lattice, tight binding model.

• Applying the above concepts to the tight binding calculations of single-layer
graphene, hBN and AB bilayer graphene.
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Bloch waves and band structure
• Blochs theorem states that the solutions od the Schrödingers equation in a

periodic potential takes the form of plane waves that are modulated by a
periodic function, and are the basis for the states in crystals.

• Bloch waves lead to the formation of electronic bands and Fermi surfaces.
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Tight binding model definition

• The tight-binding model (or TB model) is an approach for the calculation
of electronic band structures using an approximate set of wave
functions based upon superposition of wave functions for isolated
atoms located at each atomic site.

• When the atom is placed in a crystal, this atomic wave function overlaps
adjacent atomic sites, and so are not true eigenfunctions of the crystal
Hamiltonian. The overlap is less when electrons are tightly bound, which
is the source of the descriptor "tight-binding". Any corrections to the
atomic potential required to obtain the true Hamiltonian H of the
system, are assumed small.
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Recipe to calculate band structure from tight binding
1. Use Bloch’s method to define wavefunctions, which reflect the lattice symmetry

(are invariant under any lattice vector translation Rn), and include orbital
wavefunctions of the atoms of a single atom Hamiltonian in the
crystal. Use a linear combination of these as trial wave-functions which are
defined as:

2. Define Hamiltonian, is based on the potentials of the atoms in the crystals,
where is the atomic potential of a site Rn in the crystal. In the tight-
binding limit these can be assumed to be small corrections :

3. Solve Schroedingers equation to get Energy Eigenstates:
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Hybridized sp1,2,3 orbitals in carbon systems
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Hybridized bonds in carbon molecules - sp2 bonds

• In molecules or crystals atomic orbitals can hybridize and form bonds with
nearest neighbors the s and p orbitals can hybridize into sp2 orbitals.

• In graphene each carbon atom has an arrangement of 2(1s)3(sp2)1(2pz) orbitals,
instead of a typical atomic arrangement of 2(1s)2(2s)1(2px)1(2py).

Carbon orbitals: Carbon orbitals in a graphene lattice:
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sp2
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Graphene π-bands

• Bands formed from the sp2 orbitals, the σ-bands, lie at high energy and do not
contribute to the electronic properties. They are very strongly bound and give
rise to the ultra-strong mechanical properties of the graphene lattice.

• Bands formed by the pz orbitals, the π-bands, lie at low energy and define the
electronic properties even though they not very tightly bound to the carbon
atoms, the tight binding approximation works very well.

• Each tightly bound electron contributed to one band  each unit cell contains
two A and B sublattices, and hence two pz orbitals form 2 electronic bands.
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Bravais lattice in 2D
• Any crystal lattice can be described by giving a set of two base vectors

a1, a2, where a lattice can be formed by generating an infinity of translations
vectors R = ua1 + va2 with u, v = integers.

• The end points of all possible translations vectors define the lattice as a periodic
sequence of points in space - crystal lattices show a translation symmetry.
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Graphene hexagonal lattice

• Graphene lattice consists of carbon atoms arranged on a 2D Honeycomb lattice
 not a Bravais lattice.

• Graphene unit cell, has 2 equivalent hexagonal sub-lattices, called A and B –
which form a non-primitive unit cell with A and B carbon atoms on a hexagonal
lattice bipartite lattice, which contains 2 hexagonal sublattices A and B.
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Carbon translation vectors:

Unit cell vectors: B neighbors:

A neighbors:

Two non-equivalent 
A and B sub-lattices
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Reciprocal lattice

• Fourier transform of the Bravais lattice  from real space into momentum
space (k-space). Set of all wavevectors b1, b2 of plane waves in the Fourier series
of a spatial function whose periodicity is the same as that of a direct lattice.

• Has fundamental role in most analytic studies of in the theory of diffraction and
electron wave functions.

• The Brillouin zone is a Wigner-Seitz cell of the reciprocal lattice (basically unit cell
of the reciprocal lattice).
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Graphene reciprocal lattice
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• High symmetry points in the BZ – Г, M, K, K’
• A and B sub-lattices translate in the K and K’ points in the BZ

M

Reciprocal vectors:

Two non-equivalent 
K and K’ points
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Graphene lattice and reciprocal lattice

M

Two non-equivalent 
K and K’ points

• A and B sub-lattices translate into the K and K’ points in the BZ.

Two non-equivalent 
A and B sub-lattices

• Symmetries of the real and reciprocal space protect the Dirac points:

- inversion symmetry (C2 or A B)
- time reversal symmetry (T or k -k)
- 120o rotation symmetry (C3 or 0o 120o)
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Graphene band structure via tight binding derivation

మ

೙ ೙

• Since the two sub-lattices A and B only commute separately with the
Hamiltonian, we need to treat these separately and define also separate wave-
functions for these, resulting in a set of two orthogonal wave-functions:

೙ H( ) d

• Solution of the Hamiltonian then become (with lattice vectors R = ua1 + va2):

• The anti-commutation relations are:
ற ᇱ ற ᇱ

௞,௞ᇲ

• Hamiltonian:
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A and B basis representation

= ೖಲ

ೖಳ

↑

↓

H( )=

• One can also rewrite this in a matrix form in the basis of the A and B wave-
functions:

spinor 
representation

=0

• Solving the Hamiltonian for the AA and BB combination leads only to the self
energies, which by symmetry are just zero:

• Here the A and B sublattice sites act as two orthogonal wave-functions, and one
can make the same analogy as for the spinor of the 2 states of the spin. We will
show that this description can be explained as the isospin.
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Graphene band structure via tight binding derivation
• For the ஺஻ and ஻஺ only translation vectors to the nearest neighbor sites give

finite values. For the A lattice sites (3 adjacent B sites) these vectors are just the
nearest neighbor vectors. And for B analogously:

• Leading to:
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• With ଴:
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A and B basis representation

= ೖಲ

ೖಳ

↑

↓

H( )= ଴

ି௜௞ೣ௔బ ௜௞ೣ௔బ/ଶ
௬ ଴

௜௞ೣ௔బ ି௜௞ೣ௔బ/ଶ
௬ ଴

• One can also rewrite this in a matrix form in the basis of the A and B wave-
functions:

γ = γ0 can be interpreted as the hopping parameter of an electron tunneling
from A to B lattice sites.

spinor 
representation

଴ ஺
∗ H( ) ஻ ଷ
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Graphene band-structure – Dirac cones  

• The final solution of the Eigen-energies of the Hamiltonian have the form:

଴ ௬ ଴ ௫ ଴ ௬ ଴

• Dirac cones are formed in the K and K’ points. Here the electrons can be shown
to be massless and the dispersion relation described by the Dirac equation.

• Solve Schroedingers equation to get Energy Eigenstates:
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Dirac cones in the K and K’ points

• Linear dispersion relation  Effective mass of
the electrons is zero m* = 0.

• Dirac cones are formed in the K and K’ points
2 valleys no band-gaps.

valence band (holes)

conduction band (electrons)

Valley K’ Valley K

ி
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ௗ௞మ

ିଵ

~ 0

Dirac point
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Phase changes under hopping from A to B

Phase:

Phase changes under hopping:Propagation directions: Allowed k-vectors:

metallic

gapped
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Analogy to Dirac equation
• Non-relativistic particles – Schroedinger equation – no spin vs. momentum

locking.

• Relativistic particles – Dirac equation – spin and momentum are locked.

•

• H( ) = 
( Pauli matrizes)

• v = c , m = 0

• spin // momentum

“Helicity” (or “chirality” 
for particles with mass)

particle

anti-particle
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Angle-resolved photo emission maps band-structure
ARPES tool:ARPES measurement schematic:

Energy and momentum 
conserving photo-
emission process

ARPES measurements of single-layer graphene:
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hBN tight binding
• We use a Hamiltonian that considers only the pz orbitals (or hybridized orbital)

from the boron B and nitrogen N atoms.

• We consider only nearest neighbor hopping. Onsite energy on the B atom is EB
and onsite energy of the N atom is EN.

• ଴ is the hopping parameter between N and B.

• ௡ are the translation vectors between the B and N atoms.
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hBN tight binding
• We use a Hamiltonian that considers only the pz orbitals (or hybridized orbital)

from the boron B and nitrogen N atoms.

• We consider only nearest neighbor hopping. Onsite energy on the B atom is EB
and onsite energy of the N atom is EN.

• ଴ is the hopping parameter between N and B.

• ௡ are the translation vectors between the B and N atoms.

H( )=
೙

೙
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Comparison hBN and graphene band-structure 
• Band-structures between hBN and graphene are similar, but the inequivalence

of the A and B carbon sub-lattices, which are now replaced by N and B sub-
lattices, have no C2T symmetry, and the Dirac point are lifted and replaced by
large band gaps.
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Similar gap closing in SiC vs. Si
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Bilayer graphene
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AB bilayer graphene unit cell and BZ
• AB bilayer graphene consists of two

AB stacked graphene layers. The unit
cell can be spanned by the same unit
cell vectors like in single-layer
graphene, with now 4 atoms in the
unit cell. This results in A and B (A’
and B’) sub-lattices in each layer, and
therefore 4 equivalent sub-lattices.
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Potential difference between the layers

= Δ/2

• One big difference to single graphene, is that one can put the two graphene
layers onto different potentials, which define a potential difference between the
layers Δ. This can f.e. be induced by a perpendicular electric field E.

• Solving the Hamiltonian for the self energies of the A1A1, B1B1, A2A2, B2B2
combination leads only to the self energies, which by symmetry should be just
zero, but now can be raised or lowered by Δ :
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Isospin in AB bilayer graphene

=

ೖಲభ

ೖಳభ

ೖಲమ

ೖಳమ

• One can also rewrite this in a matrix form in the basis of the A1 and B1, and A2
and B2 wave-functions:

• Similar to single-layer graphene we can define the isospin properties in AB bilayer
graphene, where we now have 4 orthogonal wave-functions.

• Solving the Hamiltonian gets us the following band-structure:
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AB bilayer graphene band structure
• Unlike single layer graphene, that has 2 bands (2 electrons per unit cell), AB

bilayer graphene has 4 bands (4 electrons per unit cell).

• The K-point are connected by one point, but can be gapped out, when a
potential difference is applied between the layers.

• AB bilayer graphene has isospin properties, defined by 4 spinor like wave-
functions.



Dmitri K. Efetov

ARPES on AB bilayer graphene 
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Exotic new band structures


