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1 Graphene with SOC
Atomic spin orbit coupling (SOC) strength (λASOC) generally scales as ∼ Z4 vertically down the periodic table. [*This
should be taken with a grain of salt since we know the spin orbit interaction for Au (Z = 79) is negligible compared to Te
(Z = 52)]. Therefore, in the tight binding calculations of graphene (allotrope of C, Z = 6, λASOC ≈ 0), the SOC term
is often omitted.

(a) Search literature for controlling spin orbit interaction (not just atomic SOC). Are any of these methods applicable
to graphene? Devise an experiment to study the effect of spin orbit interaction in graphene.

(b) As a thought experiment, let’s assume that there is a new 2D material with the same crystal structure as graphene but
with significantly higher SOC. Perform the tight binding calculation for this new 2D material with λASOC >> 0.
How does the band structure change with SOC?

2 Parallel Magnetic Field
When dealing with the classical Hall effect and the quantum Hall effect, the magnetic field B⊥, is often pointed along the
z direction perpendicular to the sample plane. Now consider that the magnetic field points towards the x direction, parallel
to the electron flow in the 2DEG (i.e. B∥). The 2DEG is confined with a quantum well potential of V (z) = 1
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(a) Write the Schrödinger equation for this system using the vector potential A⃗ = (0,−zB∥, 0), plane wave ansatz
Ψ(r⃗) = eikxxeikyyΦ(z) and ωc =

qB
m∗ .

(* remember that H = 1
2m (p⃗− qA⃗)2 + V (z))

(b) Show that the Schrödinger equation can be expressed in the following form[
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Ψ = EΨ (1)

where ζ ≡
(
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)
and ω2(B) ≡ ω2

0 + ω2
c .

(c) Sketch the confining potential along the z direction (i.e. E vs z(ky)) for B∥ = 0 and B∥ ̸= 0

(d) What can be said about the effective masses for x and y at B∥ ̸= 0 ?

(e) What can be said about the energy levels of the new system?
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3 Quantum Transport

The figure above shows a four terminal, van der Pauw device made from a topological insulator. I is the applied
current, V12 = V1 − V2 the 2-probe voltage, V34 = V3 − V4 the 4-probe voltage. As we explored in HW 11, the transport
properties of a topological insulator can be explained in the Landauer-Büttiker (LB) formalism:

Ii =
e2

h

∑
j

(TjiVi − TijVj), (2)

where Ii is the current flowing from the ith electrode and Vi is the voltage on the ith electrode, and Tji is the transmission
probability from the ith to the jth electrode. Remember that I1 = I = −I2.

(e) Discuss the differences between classical Hall, integer quantum Hall, fractional quantum Hall, quantum anomalous
Hall, and quantum spin Hall effects. (i.e. What makes them - except the classical Hall - “Quantum”?)

(f) Write down the criterium for the transmission probability T of a Quantum Anomalous Hall (QAH) system.

(g) Write down the criterium for the transmission probability T of a Quantum Spin Hall (QSH) system.

(h) Write down the Landauer-Büttiker system of equations for the van der Pauw geometry shown above, assuming that
it is a QAH system.

(i) Calculate the expected 2-probe resistance, R12,12 = V12

I12
(i.e. measuring the voltage drop across leads 1 and 2 while

flowing current between leads 1 and 2) of the QAH system.

(j) Calculate the expected 4-probe resistance, R12,34 = V34

I12
(i.e. measuring the voltage drop across leads 3 and 4 while

flowing current between leads 1 and 2) of the QAH system.
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